Advertisement

Journal of Molecular Medicine

, Volume 91, Issue 6, pp 673–681 | Cite as

Peripheral inflammation in neurodegeneration

  • Ulrike Träger
  • Sarah J. TabriziEmail author
Review

Abstract

Neuroinflammation is now a well-characterised feature of neurodegenerative diseases. Immune dysfunction outside the central nervous system is also increasingly recognised as part of the diseases. Peripheral inflammation has emerged as a modulator of disease progression and neuropathology in several neurodegenerative diseases, making it targetable in new therapeutic approaches. In addition, the easy accessibility of blood immune cells and markers makes them ideal candidates for use as possible biomarkers and a potential model of central immune cells.

Keywords

Immune system Neurodegenerative diseases Peripheral inflammation 

Notes

Acknowledgments

We thank Dr. Ralph Andre for his help with editing the manuscript, Dr. Jonathan M Schott for his advice on AD antibody trials and Ray Young for his help with graphics. Our work is supported financially by UCL/UCLH Biomedical Research Centre (PhD studentship to UT), BBSRC, Medical Research Council, CHDI Foundation, EU FP7 grant (Paddington consortium) and the UK Dementia and Neurodegenerative Diseases Network (DeNDRoN).

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillée S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302:113–117PubMedCrossRefGoogle Scholar
  2. 2.
    Bradford J, Shin JY, Roberts M, Wang CE, Li XJ, Li S (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A 106:22480–22485PubMedCrossRefGoogle Scholar
  3. 3.
    Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3:1135–1141PubMedCrossRefGoogle Scholar
  4. 4.
    Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145PubMedCrossRefGoogle Scholar
  5. 5.
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10:1538–1543PubMedCrossRefGoogle Scholar
  6. 6.
    Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60:161–172PubMedGoogle Scholar
  7. 7.
    Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577PubMedCrossRefGoogle Scholar
  8. 8.
    Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766PubMedCrossRefGoogle Scholar
  9. 9.
    Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A (2007) Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246PubMedCrossRefGoogle Scholar
  10. 10.
    Herrera AJ, Castaño A, Venero JL, Cano J, Machado A (2000) The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis 7:429–447PubMedCrossRefGoogle Scholar
  11. 11.
    Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346PubMedCrossRefGoogle Scholar
  12. 12.
    Schwab C, McGeer PL (2008) Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis 13:359–369PubMedGoogle Scholar
  13. 13.
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093PubMedCrossRefGoogle Scholar
  14. 14.
    Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099PubMedCrossRefGoogle Scholar
  15. 15.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127PubMedCrossRefGoogle Scholar
  16. 16.
    Wahner AD, Sinsheimer JS, Bronstein JM, Ritz B (2007) Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease. Arch Neurol 64:836–840PubMedCrossRefGoogle Scholar
  17. 17.
    Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E et al (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat Genet 42:781–785PubMedCrossRefGoogle Scholar
  18. 18.
    Björkqvist M, Wild EJ, Tabrizi SJ (2009) Harnessing immune alterations in neurodegenerative diseases. Neuron 64:21–24PubMedCrossRefGoogle Scholar
  19. 19.
    Lee KS, Chung JH, Choi TK, Suh SY, Oh BH, Hong CH (2009) Peripheral cytokines and chemokines in Alzheimer’s disease. Dement Geriatr Cogn Disord 28:281–287PubMedCrossRefGoogle Scholar
  20. 20.
    Ferrari CC, Tarelli R (2011) Parkinson's disease and systemic inflammation. Parkinsons Dis 2011:9Google Scholar
  21. 21.
    Kuhle J, Lindberg RL, Regeniter A, Mehling M, Steck AJ, Kappos L, Czaplinski A (2009) Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol 16:771–774PubMedCrossRefGoogle Scholar
  22. 22.
    Moreau C, Devos D, Brunaud-Danel V, Defebvre L, Perez T, Destée A, Tonnel AB, Lassalle P, Just N (2005) Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65:1958–1960PubMedCrossRefGoogle Scholar
  23. 23.
    Björkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D et al (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877PubMedCrossRefGoogle Scholar
  24. 24.
    Wild E, Magnusson A, Lahiri N, Krus U, Orth M, Tabrizi SJ, Björkqvist M (2011) Abnormal peripheral chemokine profile in Huntington's disease. PLoS Curr 3:RRN1231PubMedCrossRefGoogle Scholar
  25. 25.
    Dalrymple A, Wild EJ, Joubert R, Sathasivam K, Björkqvist M, Petersén A, Jackson GS, Isaacs JD, Kristiansen M, Bates GP et al (2007) Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 6:2833–2840PubMedCrossRefGoogle Scholar
  26. 26.
    Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Güntert A et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67:739–748PubMedCrossRefGoogle Scholar
  27. 27.
    Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M (2009) Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 23:55–63PubMedCrossRefGoogle Scholar
  28. 28.
    Bessler H, Djaldetti R, Salman H, Bergman M, Djaldetti M (1999) IL-1 beta, IL-2, IL-6 and TNF-alpha production by peripheral blood mononuclear cells from patients with Parkinson’s disease. Biomed Pharmacother 53:141–145PubMedCrossRefGoogle Scholar
  29. 29.
    Solerte SB, Cravello L, Ferrari E, Fioravanti M (2000) Overproduction of IFN-gamma and TNF-alpha from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer’s disease. Ann N Y Acad Sci 917:331–340PubMedCrossRefGoogle Scholar
  30. 30.
    Shalit F, Sredni B, Brodie C, Kott E, Huberman M (1995) T lymphocyte subpopulations and activation markers correlate with severity of Alzheimer’s disease. Clin Immunol Immunopathol 75:246–250PubMedCrossRefGoogle Scholar
  31. 31.
    Lombardi VR, García M, Rey L, Cacabelos R (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s disease (AD) individuals. J Neuroimmunol 97:163–171PubMedCrossRefGoogle Scholar
  32. 32.
    Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122PubMedCrossRefGoogle Scholar
  33. 33.
    Sun YX, Minthon L, Wallmark A, Warkentin S, Blennow K, Janciauskiene S (2003) Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 16:136–144PubMedCrossRefGoogle Scholar
  34. 34.
    O’Neill LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20:252–258PubMedCrossRefGoogle Scholar
  35. 35.
    Mattson MP, Meffert MK (2006) Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 13:852–860PubMedCrossRefGoogle Scholar
  36. 36.
    Teng FY, Tang BL (2010) NF-kappaB signaling in neurite growth and neuronal survival. Rev Neurosci 21:299–313PubMedGoogle Scholar
  37. 37.
    Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C (1997) Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci U S A 94:2642–2647PubMedCrossRefGoogle Scholar
  38. 38.
    Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci U S A 94:7531–7536PubMedCrossRefGoogle Scholar
  39. 39.
    Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH (2004) Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 24:7999–8008PubMedCrossRefGoogle Scholar
  40. 40.
    Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964PubMedCrossRefGoogle Scholar
  41. 41.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318PubMedCrossRefGoogle Scholar
  42. 42.
    Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144PubMedCrossRefGoogle Scholar
  43. 43.
    Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202:17–20PubMedCrossRefGoogle Scholar
  44. 44.
    Turner MR, Kiernan MC, Leigh PN, Talbot K (2009) Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 8:94–109PubMedCrossRefGoogle Scholar
  45. 45.
    Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397PubMedCrossRefGoogle Scholar
  46. 46.
    Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13:1359–1362PubMedCrossRefGoogle Scholar
  47. 47.
    Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94PubMedCrossRefGoogle Scholar
  48. 48.
    Baron P, Bussini S, Cardin V, Corbo M, Conti G, Galimberti D, Scarpini E, Bresolin N, Wharton SB, Shaw PJ et al (2005) Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis. Muscle Nerve 32:541–544PubMedCrossRefGoogle Scholar
  49. 49.
    Choi C, Jeong JH, Jang JS, Choi K, Lee J, Kwon J, Choi KG, Lee JS, Kang SW (2008) Multiplex analysis of cytokines in the serum and cerebrospinal fluid of patients with Alzheimer’s disease by color-coded bead technology. J Clin Neurol 4:84–88PubMedCrossRefGoogle Scholar
  50. 50.
    Kwan W, Magnusson A, Chou A, Adame A, Carson MJ, Kohsaka S, Masliah E, Möller T, Ransohoff R, Tabrizi SJ et al (2012) Bone marrow transplantation confers modest benefits in mouse models of Huntington’s disease. J Neurosci 32:133–142PubMedCrossRefGoogle Scholar
  51. 51.
    Simard AR, Soulet D, Gowing G, Julien JP, Rivest S (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502PubMedCrossRefGoogle Scholar
  52. 52.
    Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Brück W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553PubMedCrossRefGoogle Scholar
  53. 53.
    Diserbo M, Agin A, Lamproglou I, Mauris J, Staali F, Multon E, Amourette C (2002) Blood–brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can J Physiol Pharmacol 80:670–678PubMedCrossRefGoogle Scholar
  54. 54.
    Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774PubMedCrossRefGoogle Scholar
  55. 55.
    Holmes C, Cunningham C, Zotova E, Culliford D, Perry VH (2011) Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 77:212–218PubMedCrossRefGoogle Scholar
  56. 56.
    Harris MA, Tsui JK, Marion SA, Shen H, Teschke K (2012) Association of Parkinson’s disease with infections and occupational exposure to possible vectors. Mov Disord 27:1111–1117PubMedCrossRefGoogle Scholar
  57. 57.
    D’Amelio M, Ragonese P, Morgante L, Reggio A, Callari G, Salemi G, Savettieri G (2006) Long-term survival of Parkinson’s disease: a population-based study. J Neurol 253:33–37PubMedCrossRefGoogle Scholar
  58. 58.
    Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF, Deacon RM, Rawlins JN, Perry VH (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 65:304–312PubMedCrossRefGoogle Scholar
  59. 59.
    Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462PubMedCrossRefGoogle Scholar
  60. 60.
    Bouchard J, Truong J, Bouchard K, Dunkelberger D, Desrayaud S, Moussaoui S, Tabrizi SJ, Stella N, Muchowski PJ (2012) Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J Neurosci 32:18259–18268PubMedCrossRefGoogle Scholar
  61. 61.
    Banks WA, Kastin AJ, Broadwell RD (1995) Passage of cytokines across the blood–brain barrier. Neuroimmunomodulation 2:241–248PubMedCrossRefGoogle Scholar
  62. 62.
    Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161–167PubMedCrossRefGoogle Scholar
  63. 63.
    Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson PJ, Ericsson-Dahlstrand A (2001) Inflammatory response: pathway across the blood–brain barrier. Nature 410:430–431PubMedCrossRefGoogle Scholar
  64. 64.
    Ransohoff RM, Kivisäkk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581PubMedCrossRefGoogle Scholar
  65. 65.
    Czirr E, Wyss-Coray T (2012) The immunology of neurodegeneration. J Clin Invest 122:1156–1163PubMedCrossRefGoogle Scholar
  66. 66.
    Tracey KJ (2009) Reflex control of immunity. Nat Rev Immunol 9:418–428PubMedCrossRefGoogle Scholar
  67. 67.
    Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179PubMedCrossRefGoogle Scholar
  68. 68.
    Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J, Andrews-Zwilling Y, Hsieh EW et al (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874PubMedCrossRefGoogle Scholar
  69. 69.
    Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A (2005) Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol 58:963–967PubMedCrossRefGoogle Scholar
  70. 70.
    Manthripragada AD, Schernhammer ES, Qiu J, Friis S, Wermuth L, Olsen JH, Ritz B (2011) Non-steroidal anti-inflammatory drug use and the risk of Parkinson’s disease. Neuroepidemiology 36:155–161PubMedCrossRefGoogle Scholar
  71. 71.
    Imbimbo BP, Solfrizzi V, Panza F (2010) Are NSAIDs useful to treat Alzheimer’s disease or mild cognitive impairment? Front Aging Neurosci 2Google Scholar
  72. 72.
    Senior K (2002) Dosing in phase II trial of Alzheimer’s vaccine suspended. Lancet Neurol 1:3PubMedCrossRefGoogle Scholar
  73. 73.
    Frenkel D, Maron R, Burt DS, Weiner HL (2005) Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 115:2423–2433PubMedCrossRefGoogle Scholar
  74. 74.
    Callaway E (2012) Alzheimer’s drugs take a new tack. Nature 489:13–14PubMedCrossRefGoogle Scholar
  75. 75.
    Farlow M, Arnold SE, van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, Friedrich S, Dean RA, Gonzales C, Sethuraman G et al (2012) Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement 8:261–271PubMedCrossRefGoogle Scholar
  76. 76.
    Strobel G, Zakaib G (2013) Solanezumab selected for Alzheimer’s A4 prevention trial. In: Alzheimer Research Forum–News. http://www.alzforum.org/new/detail.asp?id=3379. Accessed 05 March 2013.
  77. 77.
    Brodacki B, Staszewski J, Toczyłowska B, Kozłowska E, Drela N, Chalimoniuk M, Stepien A (2008) Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett 441:158–162PubMedCrossRefGoogle Scholar
  78. 78.
    Licastro F, Pedrini S, Caputo L, Annoni G, Davis LJ, Ferri C, Casadei V, Grimaldi LM (2000) Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain? J Neuroimmunol 103:97–102PubMedCrossRefGoogle Scholar
  79. 79.
    Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW (1999) Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 100:34–41PubMedCrossRefGoogle Scholar
  80. 80.
    Ono S, Hu J, Shimizu N, Imai T, Nakagawa H (2001) Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J Neurol Sci 187:27–34PubMedCrossRefGoogle Scholar
  81. 81.
    Motta M, Imbesi R, Di Rosa M, Stivala F, Malaguarnera L (2007) Altered plasma cytokine levels in Alzheimer’s disease: correlation with the disease progression. Immunol Lett 114:46–51PubMedCrossRefGoogle Scholar
  82. 82.
    Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos A, Zoga M, Tsoutsou A, Boufidou F, Kapaki E, Vassilopoulos D (2009) Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol Scand 119:332–337PubMedCrossRefGoogle Scholar
  83. 83.
    Rentzos M, Rombos A, Nikolaou C, Zoga M, Zouvelou V, Dimitrakopoulos A, Alexakis T, Tsoutsou A, Samakovli A, Michalopoulou M et al (2010) Interleukin-15 and interleukin-12 are elevated in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur Neurol 63:285–290PubMedCrossRefGoogle Scholar
  84. 84.
    Fiala M, Chattopadhay M, La Cava A, Tse E, Liu G, Lourenco E, Eskin A, Liu PT, Magpantay L, Tse S et al (2010) IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients. J Neuroinflammation 7:76PubMedCrossRefGoogle Scholar
  85. 85.
    Alvarez XA, Franco A, Fernández-Novoa L, Cacabelos R (1996) Blood levels of histamine, IL-1 beta, and TNF-alpha in patients with mild to moderate Alzheimer disease. Mol Chem Neuropathol 29:237–252PubMedCrossRefGoogle Scholar
  86. 86.
    Singh VK, Guthikonda P (1997) Circulating cytokines in Alzheimer’s disease. J Psychiatr Res 31:657–660PubMedCrossRefGoogle Scholar
  87. 87.
    Babu GN, Kumar A, Chandra R, Puri SK, Kalita J, Misra UK (2008) Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India. Neurochem Res 33:1145–1149PubMedCrossRefGoogle Scholar
  88. 88.
    Speciale L, Calabrese E, Saresella M, Tinelli C, Mariani C, Sanvito L, Longhi R, Ferrante P (2007) Lymphocyte subset patterns and cytokine production in Alzheimer’s disease patients. Neurobiol Aging 28:1163–1169PubMedCrossRefGoogle Scholar
  89. 89.
    Houi K, Kobayashi T, Kato S, Mochio S, Inoue K (2002) Increased plasma TGF-beta1 in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 106:299–301PubMedCrossRefGoogle Scholar
  90. 90.
    Bonotis K, Krikki E, Holeva V, Aggouridaki C, Costa V, Baloyannis S (2008) Systemic immune aberrations in Alzheimer’s disease patients. J Neuroimmunol 193:183–187PubMedCrossRefGoogle Scholar
  91. 91.
    Scalzo P, de Miranda AS, Guerra Amaral DC, de Carvalho VM, Cardoso F, Teixeira AL (2011) Serum levels of chemokines in Parkinson’s disease. Neuroimmunomodulation 18:240–244PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK

Personalised recommendations