Advertisement

Journal of Molecular Medicine

, Volume 91, Issue 8, pp 1013–1023 | Cite as

Gene expression profiling and association studies implicate the neuregulin signaling pathway in Behçet's disease susceptibility

  • Joana M. Xavier
  • Tiago Krug
  • Fereydoun Davatchi
  • Farhad Shahram
  • Benedita V. Fonseca
  • Gorete Jesus
  • Filipe Barcelos
  • Joana Vedes
  • Manuel Salgado
  • Bahar Sadeghi Abdollahi
  • Abdolhadi Nadji
  • Maria Francisca Moraes-Fontes
  • Niloofar Mojarad Shafiee
  • Fahmida Ghaderibarmi
  • José Vaz Patto
  • Jorge Crespo
  • Sofia A. Oliveira
Original Article

Abstract

Behçet's disease (BD) is a complex disease with genetic and environmental risk factors implicated in its etiology; however, its pathophysiology is poorly understood. To decipher BD's genetic underpinnings, we combined gene expression profiling with pathway analysis and association studies. We compared the gene expression profiles in peripheral blood mononuclear cells (PBMCs) of 15 patients and 14 matched controls using Affymetrix microarrays and found that the neuregulin signaling pathway was over-represented among the differentially expressed genes. The Epiregulin (EREG), Amphiregulin (AREG), and Neuregulin-1 (NRG1) genes of this pathway stand out as they are also among the top differentially expressed genes. Twelve haplotype tagging SNPs at the EREG-AREG locus and 15 SNPs in NRG1 found associated in at least one published BD genome-wide association study were tested for association with BD in a dataset of 976 Iranian patients and 839 controls. We found a novel association with BD for the rs6845297 SNP located downstream of EREG, and replicated three associations at NRG1 (rs4489285, rs383632, and rs1462891). Multifactor dimensionality reduction analysis indicated the existence of epistatic interactions between EREG and NRG1 variants. EREG-AREG and NRG1, which are members of the epidermal growth factor (EGF) family, seem to modulate BD susceptibility through main effects and gene–gene interactions. These association findings support a role for the EGF/ErbB signaling pathway in BD pathogenesis that warrants further investigation and highlight the importance of combining genetic and genomic approaches to dissect the genetic architecture of complex diseases.

Keywords

Genetics Microarray Association study Behçet's disease Genetic epidemiology 

Notes

Acknowledgments

We thank Drs. Ahmet Gul, Elaine F. Remmers, Shigeaki Ohno, Nobuhisa Mizuki and Akira Meguro for sharing their GWAS data. We thank to Dr. Majid Zeidi (Iranian Blood Transfusion Organization) for his excellent support. We are thankful to Doctor Sirous Zeinali (Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran) and Doctor Kayvan Saeedfar for their valuable help. We are also deeply grateful to all study participants and to the genotyping unit at the Instituto Gulbenkian de Ciência.

Funding

This research was supported by the Research Committee of the Tehran University of Medical Sciences (grant 132/714), the Portuguese Fundação para a Ciência e a Tecnologia (grant PTDC/SAU-GMG/098937/2008, doctoral fellowship SFRH/BD/43895/2008 to JMX, and a Ciência contract to SAO), and the Portuguese Instituto do Emprego e Formação Profissional (fellowship to JMX, TK, BVF).

Disclosure of potential conflict of interest

There is no conflict of interest to disclose.

Supplementary material

109_2013_1022_MOESM1_ESM.pdf (379 kb)
ESM 1 (PDF 378 kb)

References

  1. 1.
    Kapsimali VD, Kanakis MA, Vaiopoulos GA, Kaklamanis PG (2010) Etiopathogenesis of Behçet's disease with emphasis on the role of immunological aberrations. Clin Rheumatol 29:1211–1216CrossRefPubMedGoogle Scholar
  2. 2.
    Remmers EF, Cosan F, Kirino Y, Ombrello MJ, Abaci N, Satorius C, Le JM, Yang B, Korman BD, Cakiris A et al (2010) Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet's disease. Nat Genet 42:698–702CrossRefPubMedGoogle Scholar
  3. 3.
    Mizuki N, Meguro A, Ota M, Ohno S, Shiota T, Kawagoe T, Ito N, Kera J, Okada E, Yatsu K et al (2010) Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet's disease susceptibility loci. Nat Genet 42:703–706CrossRefPubMedGoogle Scholar
  4. 4.
    Olsen N, Sokka T, Seehorn CL, Kraft B, Maas K, Moore J, Aune TM (2004) A gene expression signature for recent onset rheumatoid arthritis in peripheral blood mononuclear cells. Ann Rheum Dis 63:1387–1392CrossRefPubMedGoogle Scholar
  5. 5.
    Achiron A, Gurevich M, Friedman N, Kaminski N, Mandel M (2004) Blood transcriptional signatures of multiple sclerosis: unique gene expression of disease activity. Ann Neurol 55:410–417CrossRefPubMedGoogle Scholar
  6. 6.
    Mandel M, Gurevich M, Pauzner R, Kaminski N, Achiron A (2004) Autoimmunity gene expression portrait: specific signature that intersects or differentiates between multiple sclerosis and systemic lupus erythematosus. Clin Exp Immunol 138:164–170CrossRefPubMedGoogle Scholar
  7. 7.
    International Team for the Revision of the International Criteria for Behçet's Disease (ITR-ICBD) (2006) Revision of the International Criteria for Behçet's Disease (ICBD). Clin Exp Rheumatol 24(Suppl 42):S14–S15Google Scholar
  8. 8.
    Quian HR, Huang S (2005) Comparison of false discovery rate methods in identifying genes with differential expression. Genomics 86:495–503CrossRefGoogle Scholar
  9. 9.
    Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC et al (2001) Minimum information about a microarray experiment (MIAME): toward standards for microarray data. Nat Genet 29:365–371CrossRefPubMedGoogle Scholar
  10. 10.
    Xavier JM, Shahram F, Davatchi F, Rosa A, Crespo J, Abdollahi BS, Nadji A, Jesus G, Barcelos F, Vaz Patto J et al (2012) Association study of IL10 and IL23R-IL12RB2 in Iranian Behçet's disease patients. Arthritis Rheum 64:2761–2772CrossRefPubMedGoogle Scholar
  11. 11.
    Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265CrossRefPubMedGoogle Scholar
  12. 12.
    González JR, Armengol L, Solé X, Guinó E, Mercader JM, Estivill X, Moreno V (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23:644–645PubMedGoogle Scholar
  13. 13.
    Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147CrossRefPubMedGoogle Scholar
  14. 14.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedGoogle Scholar
  15. 15.
    Moore JH (2004) Computational analysis of gene–gene interactions using multifactor dimensionality reduction. Expert Rev Mol Diagn 4:795–803CrossRefPubMedGoogle Scholar
  16. 16.
    Davatchi F, Shahram F, Chams-Davatchi C, Shams H, Nadji A, Akhlaghi M, Faezi T, Ghodsi Z, Faridar A, Ashofteh F et al (2010) Behçet's disease: from east to west. Clin Rheumatol 29:823–833CrossRefPubMedGoogle Scholar
  17. 17.
    Hou S, Yang Z, Du L, Jiang Z, Shu Q, Chen Y, Li F, Zhou Q, Ohno S, Chen R et al (2012) Identification of a susceptibility locus in STAT4 for Behçet's disease in Han Chinese in a genome-wide association study. Arthritis Rheum 64:4104–4013CrossRefPubMedGoogle Scholar
  18. 18.
    Lee YJ, Horie Y, Wallace GR, Choi YS, Park JA, Song R, Kang YM, Kang SW, Baek HJ, Kitaichi N et al (2013) Genome-wide association study identifies GIMAP as a novel susceptibility locus for Behcet's disease. Ann Rheum Dis. doi: 10.1136/annrheumdis-2011-200288
  19. 19.
    Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284:14–30CrossRefPubMedGoogle Scholar
  20. 20.
    Shirasawa S, Sugiyama S, Baba I, Inokuchi J, Sekine S, Ogino K, Kawamura Y, Dohi T, Fujimoto M, Sasazuki T (2004) Dermatitis due to epiregulin deficiency and a critical role of epiregulin in immune-related responses of keratinocyte and macrophage. Proc Natl Acad Sci U S A 101:13921–13926CrossRefPubMedGoogle Scholar
  21. 21.
    Sugiyama S, Nakabayashi K, Baba I, Sasazuki T, Shirasawa S (2005) Role of epiregulin in peptidoglycan-induced proinflammatory cytokine production by antigen presenting cells. Biochem Biophys Res Commun 337:271–274CrossRefPubMedGoogle Scholar
  22. 22.
    Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ (1989) Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 243:1074–1076CrossRefPubMedGoogle Scholar
  23. 23.
    Ishii T, Onda H, Tanigawa A, Ohshima S, Fujiwara H, Mima T, Katada Y, Deguchi H, Suemura M, Miyake T et al (2005) Isolation and expression profiling of genes upregulated in the peripheral blood cells of systemic lupus erythematosus patients. DNA Res 12:429–439CrossRefPubMedGoogle Scholar
  24. 24.
    Cook PW, Pittelkow MR, Keeble WW, Graves-Deal R, Coffey RJ Jr, Shipley GD (1992) Amphiregulin messenger RNA is elevated in psoriatic epidermis and gastrointestinal carcinomas. Cancer Res 52:3224–3227PubMedGoogle Scholar
  25. 25.
    Davies MR, Harding CJ, Raines S, Tolley K, Parker AE, Downey-Jones M, Needham MR (2005) Nurr1 dependent regulation of pro-inflammatory mediators in immortalised synovial fibroblasts. J Inflamm 2:15CrossRefGoogle Scholar
  26. 26.
    Cook PW, Brown JR, Cornell KA, Pittelkow MR (2004) Suprabasal expression of human amphiregulin in the epidermis of transgenic mice induces a severe, earlyonset, psoriasis-like skin pathology: expression of amphiregulin in the basal epidermis is also associated with synovitis. Exp Dermatol 13:347–356CrossRefPubMedGoogle Scholar
  27. 27.
    Marballi K, Quinones MP, Jimenez F, Escamilla MA, Raventós H, Soto-Bernardini MC, Ahuja SS, Walss-Bass C (2010) In vivo and in vitro genetic evidence of involvement of neuregulin 1 in immune system dysregulation. J Mol Med 88:1133–1141CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joana M. Xavier
    • 1
    • 2
  • Tiago Krug
    • 1
    • 2
  • Fereydoun Davatchi
    • 3
  • Farhad Shahram
    • 3
  • Benedita V. Fonseca
    • 1
    • 2
  • Gorete Jesus
    • 4
  • Filipe Barcelos
    • 5
  • Joana Vedes
    • 6
  • Manuel Salgado
    • 7
  • Bahar Sadeghi Abdollahi
    • 3
  • Abdolhadi Nadji
    • 3
  • Maria Francisca Moraes-Fontes
    • 8
  • Niloofar Mojarad Shafiee
    • 3
  • Fahmida Ghaderibarmi
    • 3
  • José Vaz Patto
    • 5
  • Jorge Crespo
    • 9
  • Sofia A. Oliveira
    • 1
    • 2
  1. 1.Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaLisboaPortugal
  2. 2.Instituto Gulbenkian de CiênciaOeirasPortugal
  3. 3.Rheumatology Research CenterTehran University of Medical SciencesTehranIran
  4. 4.Hospital Infante D. PedroAveiroPortugal
  5. 5.Instituto Português de ReumatologiaLisboaPortugal
  6. 6.Hospital de Sousa MartinsGuardaPortugal
  7. 7.Hospital Pediátrico de CoimbraCoimbraPortugal
  8. 8.Hospital Curry CabralLisboaPortugal
  9. 9.Hospitais da Universidade de CoimbraCoimbraPortugal

Personalised recommendations