Journal of Molecular Medicine

, Volume 91, Issue 8, pp 965–976 | Cite as

Stat3β mitigates development of atherosclerosis in apolipoprotein E-deficient mice

  • Jihyun Lee
  • William M. BaldwinIII
  • Chih-Yuan Lee
  • Stephen Desiderio
Original Article

Abstract

The transcription factor Stat3 is an activator of systemic inflammatory genes. Two isoforms of Stat3 are generated by alternative splicing, Stat3α and Stat3β. The β isoform lacks the transactivation domain but retains other functions, including dimerization and DNA binding. Stat3β-deficient mice exhibit elevated expression of systemic inflammatory genes and are hyperresponsive to lipopolysaccharide, suggesting that Stat3β functions predominantly as a suppressor of systemic inflammation. To test whether Stat3β deficiency would provoke pathologic effects associated with chronic inflammation, we asked whether selective removal of Stat3β would exacerbate the development of atherosclerosis in apolipoprotein E-deficient mice. In apoE−/−Stat3β−/− mice atherosclerotic plaque formation was significantly enhanced relative to apoE−/−Stat3β+/+ controls. The ability of Stat3β deficiency to promote atherosclerosis was more pronounced in female mice, but could be unmasked in males by feeding a high fat diet. Infiltrating macrophages were not increased in aortas of apoE−/−Stat3β−/− mice. In contrast, the proportion of pro-inflammatory TH17 cells was significantly elevated in aortic infiltrates from apoE−/−Stat3β−/− mice, relative to paired apoE−/−Stat3β+/+ littermates. These observations indicate that Stat3β can suppress pathologic sequelae associated with chronic inflammation. Our findings further suggest that in Stat3β-deficient mice the unopposed action of Stat3α may enhance atherogenesis in part by promoting differentiation of TH17 cells.

Keywords

Stat3 Atherosclerosis Inflammation Acute phase response 

Notes

Acknowledgements and disclosure statement

We are grateful to Dominic Dordai for expert technical support and Karen Fox-Talbot for preparation and staining of aortic root samples. The work was supported by National Institutes of Health grant HL073971 and by a gift to the Johns Hopkins Institute for Cell Engineering. J.L. was supported in part by National Institute of General Medical Sciences training grant 5T32GM008752. The authors have no commercial or other associations that would pose a conflict of interest in connection with this manuscript.

Supplementary material

109_2013_1013_MOESM1_ESM.pdf (21.2 mb)
ESM 1 (PDF 21735 kb)

References

  1. 1.
    Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519CrossRefPubMedGoogle Scholar
  2. 2.
    Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101:1767–1772CrossRefPubMedGoogle Scholar
  3. 3.
    Koenig W, Sund M, Frohlich M, Fischer HG, Lowel H, Doring A, Hutchinson WL, Pepys MB (1999) C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 99:237–242CrossRefPubMedGoogle Scholar
  4. 4.
    Speidl WS, Graf S, Hornykewycz S, Nikfardjam M, Niessner A, Zorn G, Wojta J, Huber K (2002) High-sensitivity C-reactive protein in the prediction of coronary events in patients with premature coronary artery disease. Am Heart J 144:449–455CrossRefPubMedGoogle Scholar
  5. 5.
    Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342:836–843CrossRefPubMedGoogle Scholar
  6. 6.
    Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J (1998) Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men. Lancet 351:88–92CrossRefPubMedGoogle Scholar
  7. 7.
    Schonbeck U, Varo N, Libby P, Buring J, Ridker PM (2001) Soluble CD40L and cardiovascular risk in women. Circulation 104:2266–2268CrossRefPubMedGoogle Scholar
  8. 8.
    Asanuma Y, Oeser A, Shintani AK, Turner E, Olsen N, Fazio S, Linton MF, Raggi P, Stein CM (2003) Premature coronary-artery atherosclerosis in systemic lupus erythematosus. N Engl J Med 349:2407–2415CrossRefPubMedGoogle Scholar
  9. 9.
    Riikola A, Sipila K, Kahonen M, Jula A, Nieminen MS, Moilanen L, Kesaniemi YA, Lehtimaki T, Hulkkonen J (2009) Interleukin-6 promoter polymorphism and cardiovascular risk factors: the Health 2000 Survey. Atherosclerosis 207:466–470CrossRefPubMedGoogle Scholar
  10. 10.
    Blankenberg S, Barbaux S, Tiret L (2003) Adhesion molecules and atherosclerosis. Atherosclerosis 170:191–203CrossRefPubMedGoogle Scholar
  11. 11.
    Breslow JL (1996) Mouse models of atherosclerosis. Science 272:685–688CrossRefPubMedGoogle Scholar
  12. 12.
    Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355CrossRefPubMedGoogle Scholar
  13. 13.
    Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, Means T, Halmen K, Luster AD, Golenbock DT et al (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10:416–421CrossRefPubMedGoogle Scholar
  14. 14.
    Kirii H, Niwa T, Yamada Y, Wada H, Saito K, Iwakura Y, Asano M, Moriwaki H, Seishima M (2003) Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 23:656–660CrossRefPubMedGoogle Scholar
  15. 15.
    Desiderio S, Yoo JY (2003) A genome-wide analysis of the acute-phase response and its regulation by Stat3beta. Ann N Y Acad Sci 987:280–284CrossRefPubMedGoogle Scholar
  16. 16.
    Caldenhoven E, van Dijk TB, Solari R, Armstrong J, Raaijmakers JA, Lammers JW, Koenderman L, de Groot RP (1996) STAT3beta, a splice variant of transcription factor STAT3, is a dominant negative regulator of transcription. J Biol Chem 271:13221–13227PubMedGoogle Scholar
  17. 17.
    Schaefer TS, Sanders LK, Nathans D (1995) Cooperative transcriptional activity of Jun and Stat3 beta, a short form of Stat3. Proc Natl Acad Sci U S A 92:9097–9101CrossRefPubMedGoogle Scholar
  18. 18.
    Yoo JY, Huso DL, Nathans D, Desiderio S (2002) Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell 108:331–344CrossRefPubMedGoogle Scholar
  19. 19.
    Schaefer TS, Sanders LK, Park OK, Nathans D (1997) Functional differences between Stat3alpha and Stat3beta. Mol Cell Biol 17:5307–5316PubMedGoogle Scholar
  20. 20.
    Ray JL, Leach R, Herbert JM, Benson M (2001) Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci 23:185–188CrossRefPubMedGoogle Scholar
  21. 21.
    Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140CrossRefPubMedGoogle Scholar
  22. 22.
    Reddick RL, Zhang SH, Maeda N (1994) Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb 14:141–147CrossRefPubMedGoogle Scholar
  23. 23.
    Tangirala RK, Rubin EM, Palinski W (1995) Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res 36:2320–2328PubMedGoogle Scholar
  24. 24.
    Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H, Wang Y (2012) Hyperlipidemia and atherosclerotic lesion development in LDLR-deficient mice on a long-term high-fat diet. PLoS One 7:e35835CrossRefPubMedGoogle Scholar
  25. 25.
    Caligiuri G, Nicoletti A, Zhou X, Tornberg I, Hansson GK (1999) Effects of sex and age on atherosclerosis and autoimmunity in apoE-deficient mice. Atherosclerosis 145:301–308CrossRefPubMedGoogle Scholar
  26. 26.
    Lesina M, Kurkowski MU, Ludes K, Rose-John S, Treiber M, Kloppel G, Yoshimura A, Reindl W, Sipos B, Akira S et al (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19:456–469CrossRefPubMedGoogle Scholar
  27. 27.
    Kraal G, Rep M, Janse M (1987) Macrophages in T and B cell compartments and other tissue macrophages recognized by monoclonal antibody MOMA-2. An immunohistochemical study. Scand J Immunol 26:653–661CrossRefPubMedGoogle Scholar
  28. 28.
    Austyn JM, Gordon S (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11:805–815CrossRefPubMedGoogle Scholar
  29. 29.
    Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517CrossRefPubMedGoogle Scholar
  30. 30.
    Gao Q, Jiang Y, Ma T, Zhu F, Gao F, Zhang P, Guo C, Wang Q, Wang X, Ma C et al (2010) A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 185:5820–5827CrossRefPubMedGoogle Scholar
  31. 31.
    Smith E, Prasad KM, Butcher M, Dobrian A, Kolls JK, Ley K, Galkina E (2010) Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121:1746–1755CrossRefPubMedGoogle Scholar
  32. 32.
    Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, Takahashi H, Sun HW, Kanno Y, Powrie F et al (2010) Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32:605–615CrossRefPubMedGoogle Scholar
  33. 33.
    Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974CrossRefPubMedGoogle Scholar
  34. 34.
    Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56CrossRefPubMedGoogle Scholar
  35. 35.
    Avagyan S, Aguilo F, Kamezaki K, Snoeck HW (2011) Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-beta2 and FLT3 in hematopoiesis. Blood 118:6078–6086CrossRefPubMedGoogle Scholar
  36. 36.
    Chang X, Gao JX, Jiang Q, Wen J, Seifers N, Su L, Godfrey VL, Zuo T, Zheng P, Liu Y (2005) The Scurfy mutation of FoxP3 in the thymus stroma leads to defective thymopoiesis. J Exp Med 202:1141–1151CrossRefPubMedGoogle Scholar
  37. 37.
    Maritano D, Sugrue ML, Tininini S, Dewilde S, Strobl B, Fu X, Murray-Tait V, Chiarle R, Poli V (2004) The STAT3 isoforms alpha and beta have unique and specific functions. Nat Immunol 5:401–409CrossRefPubMedGoogle Scholar
  38. 38.
    Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E et al (2003) STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421:856–859CrossRefPubMedGoogle Scholar
  39. 39.
    Cernkovich ER, Deng J, Bond MC, Combs TP, Harp JB (2008) Adipose-specific disruption of signal transducer and activator of transcription 3 increases body weight and adiposity. Endocrinology 149:1581–1590CrossRefPubMedGoogle Scholar
  40. 40.
    Lyngdorf LG, Gregersen S, Daugherty A, Falk E (2003) Paradoxical reduction of atherosclerosis in apoE-deficient mice with obesity-related type 2 diabetes. Cardiovasc Res 59:854–862CrossRefPubMedGoogle Scholar
  41. 41.
    Chiba T, Shinozaki S, Nakazawa T, Kawakami A, Ai M, Kaneko E, Kitagawa M, Kondo K, Chait A, Shimokado K (2008) Leptin deficiency suppresses progression of atherosclerosis in apoE-deficient mice. Atherosclerosis 196:68–75CrossRefPubMedGoogle Scholar
  42. 42.
    Austin MA (1989) Plasma triglyceride as a risk factor for coronary heart disease. The epidemiologic evidence and beyond. Am J Epidemiol 129:249–259PubMedGoogle Scholar
  43. 43.
    Gotto AM Jr (1998) Triglyceride as a risk factor for coronary artery disease. Am J Cardiol 82:22Q–25QCrossRefPubMedGoogle Scholar
  44. 44.
    Zadelaar S, Kleemann R, Verschuren L, de Vries-Van, der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27:1706–1721CrossRefPubMedGoogle Scholar
  45. 45.
    Stewart FA, Heeneman S, Te Poele J, Kruse J, Russell NS, Gijbels M, Daemen M (2006) Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168:649–658CrossRefPubMedGoogle Scholar
  46. 46.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133CrossRefPubMedGoogle Scholar
  47. 47.
    Harris TJ, Grosso JF, Yen HR, Xin H, Kortylewski M, Albesiano E, Hipkiss EL, Getnet D, Goldberg MV, Maris CH et al (2007) Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol 179:4313–4317PubMedGoogle Scholar
  48. 48.
    Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282:9358–9363CrossRefPubMedGoogle Scholar
  49. 49.
    Erbel C, Chen L, Bea F, Wangler S, Celik S, Lasitschka F, Wang Y, Bockler D, Katus HA, Dengler TJ (2009) Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 183:8167–8175CrossRefPubMedGoogle Scholar
  50. 50.
    van Es T, van Puijvelde GH, Ramos OH, Segers FM, Joosten LA, van den Berg WB, Michon IM, de Vos P, van Berkel TJ, Kuiper J (2009) Attenuated atherosclerosis upon IL-17R signaling disruption in LDLr deficient mice. Biochem Biophys Res Commun 388:261–265CrossRefPubMedGoogle Scholar
  51. 51.
    Butcher MJ, Gjurich BN, Phillips T, Galkina EV (2012) The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circ Res 110:675–687CrossRefPubMedGoogle Scholar
  52. 52.
    Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O, Esposito B, Perez N, Yasukawa H, Van Snick J et al (2009) Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 206:2067–2077CrossRefPubMedGoogle Scholar
  53. 53.
    Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF, Soubrier F, Esposito B, Duez H, Fievet C et al (1999) Protective role of interleukin-10 in atherosclerosis. Circ Res 85:e17–e24CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jihyun Lee
    • 1
    • 4
  • William M. BaldwinIII
    • 2
  • Chih-Yuan Lee
    • 3
  • Stephen Desiderio
    • 1
  1. 1.Department of Molecular Biology and Genetics and Institute for Cell EngineeringThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of ImmunologyLerner Research Institute, The Cleveland Clinic FoundationClevelandUSA
  3. 3.Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
  4. 4.Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations