Advertisement

Journal of Molecular Medicine

, Volume 91, Issue 6, pp 739–748 | Cite as

Conditional loss of kidney microRNAs results in congenital anomalies of the kidney and urinary tract (CAKUT)

  • Malte P. Bartram
  • Martin Höhne
  • Claudia Dafinger
  • Linus A. Völker
  • Marc Albersmeyer
  • Julia Heiss
  • Heike Göbel
  • Hella Brönneke
  • Volker Burst
  • Max C. Liebau
  • Thomas Benzing
  • Bernhard SchermerEmail author
  • Roman-Ulrich Müller
Original Article

Abstract

MicroRNAs have emerged as essential regulators of gene expression and may play important roles in a variety of human disorders. To understand the role of microRNA-mediated gene regulation in the kidney, we deleted the microRNA-processing enzyme Dicer in developing renal tubules and parts of the ureteric bud in mice. Genetic deletion of Dicer resulted in renal failure and death of the animals at 4–6 weeks of age. Interestingly, the kidneys of microRNA-deficient animals were small due to a reduced number of nephrons and showed massive hydronephrosis due to ureteropelvic junction obstruction. This phenotype is reminiscent of congenital anomalies of the kidney and urinary tract (CAKUT), an important group of human disorders characterized by a combination of renal hypoplasia with congenital abnormalities of the urinary tract. We used metanephric kidney cultures to examine the developmental defects underlying these pathologies. Dicer knockout kidneys showed a significant reduction of tubular branching explaining renal hypoplasia. Moreover, the ureters of these kidneys showed an altered morphology and impaired motility. These functional changes went along with altered expression of smooth muscle actin implying a defect in the differentiation of ureteric smooth muscle cells. In addition, we show the polycystic kidney disease gene Pkd1 to be a target of miR-20 implying that this interaction may contribute to the molecular basis for the cystogenesis in our model. In conclusion, these data demonstrate an essential role for microRNA-dependent gene regulation in mammalian kidney development and suggest that deregulation of microRNAs may underlie CAKUT, the most important group of renal disorders in humans.

Keywords

Kidney Dicer MicroRNA Pkd1 Smooth muscle CAKUT 

Notes

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft [grant numbers SCHE1562/1 and SFB832 to B.S.; BE2212, SFB635, and SFB829 to T.B.] and by the Center for Molecular Medicine Cologne [to T.B. and B.S.]. We are grateful to Peter Igarashi for providing the KspCre-expressing mouse line, to Michael J. Caplan for providing PKD1 cDNA and to Frank Costantini for sharing unpublished data. We would like to thank Katrin Walter, Ruth Herzog, Stefanie Keller, Sonja Kunath, Nadine Urban, and Bettina Maar for excellent technical support with the animal study and microRNA experiments.

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

ESM 1

(AVI 4213 kb)

109_2013_1000_MOESM2_ESM.avi (3.3 mb)
ESM 2 (AVI 3372 kb)
ESM 3

(AVI 3892 kb)

109_2013_1000_MOESM4_ESM.avi (3.8 mb)
ESM 4 (AVI 3846 kb)
109_2013_1000_MOESM5_ESM.pdf (1.8 mb)
ESM 5 (PDF 1831 kb)

References

  1. 1.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874PubMedCrossRefGoogle Scholar
  2. 2.
    Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187PubMedCrossRefGoogle Scholar
  3. 3.
    Suh N, Blelloch R (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138:1653–1661PubMedCrossRefGoogle Scholar
  4. 4.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedCrossRefGoogle Scholar
  5. 5.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934PubMedCrossRefGoogle Scholar
  6. 6.
    Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167PubMedCrossRefGoogle Scholar
  7. 7.
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217PubMedCrossRefGoogle Scholar
  8. 8.
    Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659PubMedCrossRefGoogle Scholar
  9. 9.
    Saal S, Harvey SJ (2009) MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens 18:317–323PubMedCrossRefGoogle Scholar
  10. 10.
    Chandrasekaran K, Karolina DS, Sepramaniam S, Armugam A, Wintour EM, Bertram JF, Jeyaseelan K (2012) Role of microRNAs in kidney homeostasis and disease. Kidney Int 81:617–627PubMedCrossRefGoogle Scholar
  11. 11.
    Ho J, Kreidberg JA (2012) The long and short of microRNAs in the kidney. J Am Soc Nephrol 23:400–404PubMedCrossRefGoogle Scholar
  12. 12.
    Lorenzen JM, Haller H, Thum T (2011) MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol 7:286–294PubMedCrossRefGoogle Scholar
  13. 13.
    Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, Merkenschlager M, Holzman LB, Zhang W, Mundel P et al (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19:2159–2169PubMedCrossRefGoogle Scholar
  14. 14.
    Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA (2008) Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol 19:2069–2075PubMedCrossRefGoogle Scholar
  15. 15.
    Harvey SJ, Jarad G, Cunningham J, Goldberg S, Schermer B, Harfe BD, McManus MT, Benzing T, Miner JH (2008) Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease. J Am Soc Nephrol 19:2150–2158PubMedCrossRefGoogle Scholar
  16. 16.
    Sequeira-Lopez ML, Weatherford ET, Borges GR, Monteagudo MC, Pentz ES, Harfe BD, Carretero O, Sigmund CD, Gomez RA (2010) The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol 21:460–467PubMedCrossRefGoogle Scholar
  17. 17.
    Song R, Yosypiv IV (2011) Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 26:353–364PubMedCrossRefGoogle Scholar
  18. 18.
    Renkema KY, Winyard PJ, Skovorodkin IN, Levtchenko E, Hindryckx A, Jeanpierre C, Weber S, Salomon R, Antignac C, Vainio S et al (2011) Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT). Nephrol Dial Transplant 26:3843–3851PubMedCrossRefGoogle Scholar
  19. 19.
    Sanna-Cherchi S, Caridi G, Weng PL, Scolari F, Perfumo F, Gharavi AG, Ghiggeri GM (2007) Genetic approaches to human renal agenesis/hypoplasia and dysplasia. Pediatr Nephrol 22:1675–1684PubMedCrossRefGoogle Scholar
  20. 20.
    Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102:10898–10903PubMedCrossRefGoogle Scholar
  21. 21.
    Shao X, Somlo S, Igarashi P (2002) Epithelial-specific Cre/lox recombination in the developing kidney and genitourinary tract. J Am Soc Nephrol 13:1837–1846PubMedCrossRefGoogle Scholar
  22. 22.
    Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605PubMedCrossRefGoogle Scholar
  23. 23.
    Kispert A, Vainio S, McMahon AP (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234PubMedGoogle Scholar
  24. 24.
    Shao X, Johnson JE, Richardson JA, Hiesberger T, Igarashi P (2002) A minimal Ksp-cadherin promoter linked to a green fluorescent protein reporter gene exhibits tissue-specific expression in the developing kidney and genitourinary tract. J Am Soc Nephrol 13:1824–1836PubMedCrossRefGoogle Scholar
  25. 25.
    Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, Perera RJ (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32:e188PubMedCrossRefGoogle Scholar
  26. 26.
    Pastorelli LM, Wells S, Fray M, Smith A, Hough T, Harfe BD, McManus MT, Smith L, Woolf AS, Cheeseman M et al (2009) Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm Genome 20:140–151PubMedCrossRefGoogle Scholar
  27. 27.
    Patel V, Hajarnis S, Williams D, Hunter R, Huynh D, Igarashi P (2012) MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J Am Soc Nephrol 23:1941–1948PubMedCrossRefGoogle Scholar
  28. 28.
    Nagalakshmi VK, Ren Q, Pugh MM, Valerius MT, McMahon AP, Yu J (2011) Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int 79:317–330PubMedCrossRefGoogle Scholar
  29. 29.
    Nakagawa A, Shi Y, Kage-Nakadai E, Mitani S, Xue D (2010) Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science 328:327–334PubMedCrossRefGoogle Scholar
  30. 30.
    Havens MA, Reich AA, Duelli DM, Hastings ML (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids ResGoogle Scholar
  31. 31.
    Zhdanova O, Srivastava S, Di L, Li Z, Tchelebi L, Dworkin S, Johnstone DB, Zavadil J, Chong MM, Littman DR et al (2011) The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int 80:719–730PubMedCrossRefGoogle Scholar
  32. 32.
    Woolf AS, Price KL, Scambler PJ, Winyard PJ (2004) Evolving concepts in human renal dysplasia. J Am Soc Nephrol 15:998–1007PubMedCrossRefGoogle Scholar
  33. 33.
    Waters AM, Rosenblum ND (2012) Overview of congenital anomalies of the kidney and urinary tract (CAKUT). UpToDate, Waltham, MAGoogle Scholar
  34. 34.
    Caubit X, Lye CM, Martin E, Core N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS et al (2008) Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135:3301–3310PubMedCrossRefGoogle Scholar
  35. 35.
    Airik R, Kispert A (2007) Down the tube of obstructive nephropathies: the importance of tissue interactions during ureter development. Kidney Int 72:1459–1467PubMedCrossRefGoogle Scholar
  36. 36.
    Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312PubMedGoogle Scholar
  37. 37.
    Hornstein E, Mansfield JH, Yekta S, Hu JK, Harfe BD, McManus MT, Baskerville S, Bartel DP, Tabin CJ (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438:671–674PubMedCrossRefGoogle Scholar
  38. 38.
    Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848PubMedCrossRefGoogle Scholar
  39. 39.
    Hu G, Drescher KM, Chen XM (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56PubMedGoogle Scholar
  40. 40.
    Kang H, Davis-Dusenbery BN, Nguyen PH, Lal A, Lieberman J, Van Aelst L, Lagna G, Hata A (2012) Bone morphogenetic protein 4 promotes vascular smooth muscle contractility by activating microRNA-21 (miR-21), which down-regulates expression of family of dedicator of cytokinesis (DOCK) proteins. J Biol Chem 287:3976–3986PubMedCrossRefGoogle Scholar
  41. 41.
    Uziel T, Karginov FV, Xie S, Parker JS, Wang YD, Gajjar A, He L, Ellison D, Gilbertson RJ, Hannon G et al (2009) The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proc Natl Acad Sci U S A 106:2812–2817PubMedCrossRefGoogle Scholar
  42. 42.
    Radzikinas K, Aven L, Jiang Z, Tran T, Paez-Cortez J, Boppidi K, Lu J, Fine A, Ai X (2011) A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. J Neurosci 31:15407–15415PubMedCrossRefGoogle Scholar
  43. 43.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843PubMedCrossRefGoogle Scholar
  44. 44.
    Trudel M, D’Agati V, Costantini F (1991) C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int 39:665–671PubMedCrossRefGoogle Scholar
  45. 45.
    Tran U, Zakin L, Schweickert A, Agrawal R, Doger R, Blum M, De Robertis EM, Wessely O (2010) The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137:1107–1116PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Malte P. Bartram
    • 1
  • Martin Höhne
    • 1
    • 3
  • Claudia Dafinger
    • 1
  • Linus A. Völker
    • 1
  • Marc Albersmeyer
    • 1
    • 6
  • Julia Heiss
    • 1
  • Heike Göbel
    • 4
  • Hella Brönneke
    • 2
  • Volker Burst
    • 1
  • Max C. Liebau
    • 1
    • 5
  • Thomas Benzing
    • 1
    • 2
    • 3
  • Bernhard Schermer
    • 1
    • 2
    • 3
    • 7
    Email author
  • Roman-Ulrich Müller
    • 1
    • 2
    • 3
  1. 1.Department 2 of Internal Medicine and Center for Molecular Medicine CologneUniversity of CologneCologneGermany
  2. 2.Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated DiseasesUniversity of CologneCologneGermany
  3. 3.Systems Biology of Ageing Cologne (Sybacol)University of CologneCologneGermany
  4. 4.Institute for Pathology, Diagnostic and Experimental Nephropathology UnitUniversity of CologneCologneGermany
  5. 5.Department of PediatricsUniversity of CologneCologneGermany
  6. 6.Department of Nephrology and Hypertension, Medizinische Klinik und Poliklinik IV, Campus InnenstadtKlinikum der LMUMunichGermany
  7. 7.Department 2 of Internal MedicineUniversity Hospital CologneCologneGermany

Personalised recommendations