Journal of Molecular Medicine

, Volume 91, Issue 3, pp 297–309 | Cite as

Vascular remodeling in pulmonary hypertension

Review Article


Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions, and the appearance of cells expressing smooth muscle-specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular transdifferentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase, and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting.


Pulmonary hypertension Pulmonary arterial pressure Vascular remodeling Chronic obstructive pulmonary disease Pulmonary vascular resistance 



The authors are supported by grants from the National Institutes of Health (HL073589, HL096982, HL114902, and HL67191).


  1. 1.
    Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS et al (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 30:2493–2537PubMedCrossRefGoogle Scholar
  2. 2.
    Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ et al (2009) Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 54:S55–S66PubMedCrossRefGoogle Scholar
  3. 3.
    Voelkel NF, Tuder RM (2000) Hypoxia-induced pulmonary vascular remodeling: a model for what human disease? J Clin Invest 106:733–738PubMedCrossRefGoogle Scholar
  4. 4.
    Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297:L1013–L1032PubMedCrossRefGoogle Scholar
  5. 5.
    Tuder RM (2009) Pathology of pulmonary arterial hypertension. Semin Respir Crit Care Med 30:376–385PubMedCrossRefGoogle Scholar
  6. 6.
    Stenmark KR, Rabinovitch M (2010) Emerging therapies for the treatment of pulmonary hypertension. Pediatr Crit Care Med 11:S85–S90PubMedCrossRefGoogle Scholar
  7. 7.
    Gan CT-J, Lankhaar J-W, Westerhof N, Marcus JT, Becker A, Twisk JWR, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest 132(6):1906–1912PubMedCrossRefGoogle Scholar
  8. 8.
    Mahapatra S, Nishimura RA, Sorajja P, Cha S, McGoon MD (2006) Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol 47:799–803PubMedCrossRefGoogle Scholar
  9. 9.
    Vanderpool RR, Kim AR, Molthen R, Chesler NC (2011) Effects of acute Rho kinase inhibition on chronic hypoxia-induced changes in proximal and distal pulmonary arterial structure and function. J Appl Physiol 110:188–198PubMedCrossRefGoogle Scholar
  10. 10.
    Hyvelin J-M, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P (2005) Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97:185–191PubMedCrossRefGoogle Scholar
  11. 11.
    Stenmark KR, McMurtry IF (2005) Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension: a time for reappraisal? Circ Res 97:95–98PubMedCrossRefGoogle Scholar
  12. 12.
    McMurtry IV, Abe K, Ota H, Fagan KA, Oka M (2010) Rho kinase-mediated vasoconstriction in pulmonary hypertension. Adv Exp Med Biol 661:299–308PubMedCrossRefGoogle Scholar
  13. 13.
    Penaloza D, Arias-Stella J, Sime F, Recavarren S, Marticorena E (1964) The heart and pulmonary circulation in children at high altitudes: physiological, anatomical, and clinical observations. Pediatrics 34:568–582PubMedGoogle Scholar
  14. 14.
    Rotta A, Canepa A, Hurtado A, Velasquez T, Chavez R (1956) Pulmonary circulation at sea level and at high altitudes. J Appl Physiol 9:328–336PubMedGoogle Scholar
  15. 15.
    Pryor R, Weaver WF, Blount SG (1965) Electrocardiographic observation of 493 residents living at high altitude (10,150 feet). Am J Cardiol 16:494–499PubMedCrossRefGoogle Scholar
  16. 16.
    Naeye RL (1961) Hypoxemia and pulmonary hypertension. A study of the pulmonary vasculature. Arch Pathol 71:447–452PubMedGoogle Scholar
  17. 17.
    Naeye RL (1965) Children at high altitude: pulmonary and renal abnormalities. Circ Res 16:33–38PubMedCrossRefGoogle Scholar
  18. 18.
    Arias-Stella J, Saldana M (1963) The terminal portion of the pulmonary arterial tree in people native to high altitudes. Circulation 28:915–925PubMedCrossRefGoogle Scholar
  19. 19.
    Heath D, Smith P, Rios Dalenz J, Williams D, Harris P (1981) Small pulmonary arteries in some natives of La Paz, Bolivia. Thorax 36:599–604PubMedCrossRefGoogle Scholar
  20. 20.
    Groves BM, Droma T, Sutton JR, McCullough RG, McCullough RE, Zhuang J, Rapmund G, Sun S, Janes C, Moore LG (1993) Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol 74:312–318PubMedGoogle Scholar
  21. 21.
    Gupta ML, Rao KS, Anand IS, Banerjee AK, Boparai MS (1992) Lack of smooth muscle in the small pulmonary arteries of the native Ladakhi. Is the Himalayan highlander adapted? Am Rev Respir Dis 145:1201–1204PubMedCrossRefGoogle Scholar
  22. 22.
    Wilkinson M, Langhorne CA, Heath D, Barer GR, Howard P (1988) A pathophysiological study of 10 cases of hypoxic cor pulmonale. Q J Med 66:65–85PubMedGoogle Scholar
  23. 23.
    Barberà JA, Riverola A, Roca J, Ramirez J, Wagner PD, Ros D, Wiggs BR, Rodriguez-Roisin R (1994) Pulmonary vascular abnormalities and ventilation-perfusion relationships in mild chronic obstructive pulmonary disease. Am J Respir Crit Care Med 149:423–429PubMedGoogle Scholar
  24. 24.
    Wright JL, Petty T, Thurlbeck WM (1992) Analysis of the structure of the muscular pulmonary arteries in patients with pulmonary hypertension and COPD: National Institutes of Health nocturnal oxygen therapy trial. Lung 170:109–124PubMedCrossRefGoogle Scholar
  25. 25.
    Santos S, Peinado VI, Ramírez J, Melgosa T, Roca J, Rodriguez-Roisin R, Barberà JA (2002) Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur Respir J 19:632–638PubMedCrossRefGoogle Scholar
  26. 26.
    Voelkel N, Mizuno S, Gomez-Arroyo J (2011) COPD/emphysema: the vascular story. Pulm Circ 3:320CrossRefGoogle Scholar
  27. 27.
    Glover GH, Newsom IE (1915) Brisket disease: dropsy of high altitudes. Colo Agric Exp Station 204:3–24Google Scholar
  28. 28.
    Rhodes J (2005) Comparative physiology of hypoxic pulmonary hypertension: historical clues from brisket disease. J Appl Physiol 98:1092–1100PubMedCrossRefGoogle Scholar
  29. 29.
    Stenmark KR, Fasules J, Hyde DM, Voelkel NF, Henson J, Tucker A, Wilson H, Reeves JT (1987) Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4,300 m. J Appl Physiol 62:821–830PubMedGoogle Scholar
  30. 30.
    Rabinovitch M, Gamble WJ, Nadas AS, Miettinen OS, Reid L (1979) Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am J Physiol 236:H818–H827PubMedGoogle Scholar
  31. 31.
    Rabinovitch M, Chesler N, Molthen RC (2007) Point:counterpoint: chronic hypoxia-induced pulmonary hypertension does/does not lead to loss of pulmonary vasculature. J Appl Physiol 103:1449–1451PubMedCrossRefGoogle Scholar
  32. 32.
    Hislop A, Reid L (1976) New findings in pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. Br J Exp Pathol 57:542–554PubMedGoogle Scholar
  33. 33.
    Berg JT (2007) Chronic hypoxia-induced pulmonary hypertension does/does not lead to loss of pulmonary vasculature. J Appl Physiol 103:1455PubMedCrossRefGoogle Scholar
  34. 34.
    Mcloughlin P, Mcmurtry I (2007) Counterpoint: chronic hypoxia-induced pulmonary hypertension does not lead to loss of pulmonary vasculature. J Appl Physiol 103:1451–1453, discussion 1453–1454PubMedCrossRefGoogle Scholar
  35. 35.
    Howell K, Preston RJ, McLoughlin P (2003) Chronic hypoxia causes angiogenesis in addition to remodelling in the adult rat pulmonary circulation. J Physiol 547:133–145PubMedCrossRefGoogle Scholar
  36. 36.
    Bauer NR, Moore TM, McMurtry IF (2007) Rodent models of PAH: are we there yet? Am J Physiol Lung Cell Mol Physiol 293:L580–L582PubMedCrossRefGoogle Scholar
  37. 37.
    Paddenberg R, Stieger P, Von Lilien A-L, Faulhammer P, Goldenberg A, Tillmanns HH, Kummer W, Braun-Dullaeus RC (2007) Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice. Respir Res 8:15PubMedCrossRefGoogle Scholar
  38. 38.
    Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691PubMedCrossRefGoogle Scholar
  39. 39.
    Jaenke RS, Alexander AF (1973) Fine structural alterations of bovine peripheral pulmonary arteries in hypoxia-induced hypertension. Am J Pathol 73:377–398PubMedGoogle Scholar
  40. 40.
    Nagaoka T, Muramatsu M, Sato K, McMurtry I, Oka M, Fukuchi Y (2001) Mild hypoxia causes severe pulmonary hypertension in fawn-hooded but not in Tester Moriyama rats. Respir Physiol 127:53–60PubMedCrossRefGoogle Scholar
  41. 41.
    Sato K, Webb S, Tucker A, Rabinovitch M, O’Brien RF, McMurtry IF, Stelzner TJ (1992) Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat. Am Rev Respir Dis 145:793–797PubMedGoogle Scholar
  42. 42.
    Taraseviciene-Stewart L, Kasahara Y, Alger L, Hirth P, Mc Mahon G, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15:427–438PubMedCrossRefGoogle Scholar
  43. 43.
    Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754PubMedCrossRefGoogle Scholar
  44. 44.
    Ciuclan L, Bonneau O, Hussey M, Duggan N, Holmes AM, Good R, Stringer R, Jones P, Morrell NW, Jarai G et al (2012) A novel murine model of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 184:1171–1182CrossRefGoogle Scholar
  45. 45.
    Kay JM, Harris P, Heath D (1967) Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax 22:176–179PubMedCrossRefGoogle Scholar
  46. 46.
    Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, Taraseviciene-Stewart L, Sung Y, Kraskauskas D, Farkas D et al (2012) A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 302:L977–L991PubMedCrossRefGoogle Scholar
  47. 47.
    Meyrick B, Gamble W, Reid L (1980) Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol 239:H692–H702PubMedGoogle Scholar
  48. 48.
    Tanaka Y, Schuster DP, Davis EC, Patterson GA, Botney MD (1996) The role of vascular injury and hemodynamics in rat pulmonary artery remodeling. J Clin Invest 98:434–442PubMedCrossRefGoogle Scholar
  49. 49.
    Okada K, Tanaka Y, Bernstein M, Zhang W, Patterson GA, Botney MD (1997) Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol 151:1019–1025PubMedGoogle Scholar
  50. 50.
    Maclean MR, Dempsie Y (2010) The serotonin hypothesis of pulmonary hypertension revisited. Adv Exp Med Biol 661:309–322PubMedCrossRefGoogle Scholar
  51. 51.
    MacLean MR, Alexander D, Stirrat A, Gallagher M, Douglas SA, Ohlstein EH, Morecroft I, Polland K (2000) Contractile responses to human urotensin-II in rat and human pulmonary arteries: effect of endothelial factors and chronic hypoxia in the rat. Br J Pharmacol 130:201–204PubMedCrossRefGoogle Scholar
  52. 52.
    Eddahibi S, Fabre V, Boni C, Martres MP, Raffestin B, Hamon M, Adnot S (1999) Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells. Relationship with the mitogenic action of serotonin. Circ Res 84:329–336PubMedCrossRefGoogle Scholar
  53. 53.
    White K, Dempsie Y, Nilsen M, Wright AF, Loughlin L, MacLean MR (2011) The serotonin transporter, gender, and 17β oestradiol in the development of pulmonary arterial hypertension. Cardiovasc Res 90:373–382PubMedCrossRefGoogle Scholar
  54. 54.
    Lowery JW, de Caestecker MP (2010) BMP signaling in vascular development and disease. Cytokine Growth Factor Rev 21:287–298PubMedCrossRefGoogle Scholar
  55. 55.
    Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20:343–355PubMedCrossRefGoogle Scholar
  56. 56.
    Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ et al (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737–744PubMedCrossRefGoogle Scholar
  57. 57.
    Elliott CG (2005) Genetics of pulmonary arterial hypertension: current and future implications. Semin Respir Crit Care Med 26:365–371PubMedCrossRefGoogle Scholar
  58. 58.
    Newman JH, Phillips JA, Loyd JE (2008) Narrative review: the enigma of pulmonary arterial hypertension: new insights from genetic studies. Ann Intern Med 148:278–283PubMedGoogle Scholar
  59. 59.
    Davies RJ, Morrell NW (2008) Molecular mechanisms of pulmonary arterial hypertension: role of mutations in the bone morphogenetic protein type II receptor. Chest 134:1271–1277PubMedCrossRefGoogle Scholar
  60. 60.
    Beppu H, Ichinose F, Kawai N, Jones RC, Yu PB, Zapol WM, Miyazono K, Li E, Bloch KD (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247PubMedCrossRefGoogle Scholar
  61. 61.
    Song Y, Jones JE, Beppu H, Keaney JF, Loscalzo J, Zhang Y-Y (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112:553–562PubMedCrossRefGoogle Scholar
  62. 62.
    Frank DB, Lowery J, Anderson L, Brink M, Reese J, de Caestecker M (2008) Increased susceptibility to hypoxic pulmonary hypertension in Bmpr2 mutant mice is associated with endothelial dysfunction in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 294:L98–L109PubMedCrossRefGoogle Scholar
  63. 63.
    West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, Hoedt-Miller M, Tada Y, Ozimek J, Tuder R et al (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94:1109–1114PubMedCrossRefGoogle Scholar
  64. 64.
    Suzuki H, Twarog BM (1982) Membrane properties of smooth muscle cells in pulmonary hypertensive rats. Am J Physiol 242:H907–H915PubMedGoogle Scholar
  65. 65.
    Shimoda LA, Polak J (2011) Theme: Hypoxia. Hypoxia and ion channel function. Am J Physiol Cell Physiol 300(5):C951–C967PubMedCrossRefGoogle Scholar
  66. 66.
    Yuan JX, Aldinger AM, Juhaszova M, Wang J, Conte JV Jr, Gaine SP, Orens JB, Rubin LJ (1998) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98:1400–1406PubMedCrossRefGoogle Scholar
  67. 67.
    Burg ED, Remillard CV, Yuan JX (2008) Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: pharmacotherapeutic implications. Br J Pharmacol 153(Suppl 1):S99–S111PubMedGoogle Scholar
  68. 68.
    Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–250PubMedCrossRefGoogle Scholar
  69. 69.
    Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS et al (2006) An abnormal mitochondrial-hypoxia inducible factor-1a-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–2641PubMedCrossRefGoogle Scholar
  70. 70.
    Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ (1998) Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351:726–727PubMedCrossRefGoogle Scholar
  71. 71.
    Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, Hashimoto K, Bonnet SN, Michelakis ED (2007) The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A 104:11418–11423PubMedCrossRefGoogle Scholar
  72. 72.
    Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G et al (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037–2044PubMedCrossRefGoogle Scholar
  73. 73.
    Shimoda LA, Sham JS, Shimoda TH, Sylvester JT (2000) L-type Ca2+ channels, resting [Ca2+]i, and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol 279:L884–L894PubMedGoogle Scholar
  74. 74.
    Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, Shimoda LA (2006) Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98:1528–1537PubMedCrossRefGoogle Scholar
  75. 75.
    Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496–505PubMedCrossRefGoogle Scholar
  76. 76.
    Rich S, Kaufmann E, Levy PS (1992) The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med 327:76–81PubMedCrossRefGoogle Scholar
  77. 77.
    Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S, Garcia G, Parent F, Herve P, Simonneau G (2005) Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111:3105–3111PubMedCrossRefGoogle Scholar
  78. 78.
    Bonnet S, Dumas-de-La-Roque E, Begueret H, Marthan R, Fayon M, Dos Santos P, Savineau JP, Baulieu EE (2003) Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension. Proc Natl Acad Sci U S A 100:9488–9493PubMedCrossRefGoogle Scholar
  79. 79.
    McMurtry MS, Bonnet S, Wu X, Dyck JR, Haromy A, Hashimoto K, Michelakis ED (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840PubMedCrossRefGoogle Scholar
  80. 80.
    Golovina VA, Platoshyn O, Bailey CL, Wang J, Limsuwan A, Sweeney M, Rubin LJ, Yuan JX (2001) Upregulated TRP and enhanced capacitative Ca2+ entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol 280:H746–H755PubMedGoogle Scholar
  81. 81.
    Landsberg JW, Yuan JX (2004) Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol Sci 19:44–50PubMedGoogle Scholar
  82. 82.
    Leggett K, Maylor J, Undem C, Lai N, Lu W, Schweitzer KS, King LS, Myers AC, Sylvester JT, Sidhaye VK et al (2012) Hypoxia-induced migration in pulmonary arterial smooth muscle cells requires calcium-dependent upregulation of aquaporin 1. Am J Physiol Lung Cell Mol Physiol 303:L343–L353PubMedCrossRefGoogle Scholar
  83. 83.
    Liu XR, Zhang MF, Yang N, Liu Q, Wang RX, Cao YN, Yang XR, Sham JS, Lin MJ (2012) Enhanced store-operated Ca2+ entry and TRPC channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Cell Physiol 302:C77–C87PubMedCrossRefGoogle Scholar
  84. 84.
    Song MY, Makino A, Yuan JX (2011) STIM2 contributes to enhanced store-operated Ca entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Pulm Circ 1:84–94PubMedGoogle Scholar
  85. 85.
    Luke T, Maylor J, Undem C, Sylvester JT, Shimoda LA (2012) Kinase dependent activation of voltage-gated Ca2+ channels by ET-1 in pulmonary arterial myocytes during chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 302:L1128–L1139PubMedCrossRefGoogle Scholar
  86. 86.
    Hirenallur SD, Haworth ST, Leming JT, Chang J, Hernandez G, Gordon JB, Rusch NJ (2008) Upregulation of vascular calcium channels in neonatal piglets with hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295:L915–L924CrossRefGoogle Scholar
  87. 87.
    Rodman DM, Reese K, Harral J, Fouty B, Wu S, West J, Hoedt-Miller M, Tada Y, Li KX, Cool C et al (2005) Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ Res 96:864–872PubMedCrossRefGoogle Scholar
  88. 88.
    Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894PubMedCrossRefGoogle Scholar
  89. 89.
    Odell AF, Scott JL, Van Helden DF (2005) EGF induces tyrosine phosphorylation, membrane insertion and activation of transient receptor potential channel 4. J Biol Chem 280:37974–37987PubMedCrossRefGoogle Scholar
  90. 90.
    Wang J, Weigand L, Foxson J, Shimoda LA, Sylvester JT (2007) Ca2+ signaling in hypoxic pulmonary vasoconstriction: effects of myosin light chain and Rho kinase antagonists. Am J Physiol Lung Cell Mol Physiol 293:L674–L685PubMedCrossRefGoogle Scholar
  91. 91.
    Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci U S A 101:13861–13866PubMedCrossRefGoogle Scholar
  92. 92.
    Kunichika N, Landsberg JW, Yu Y, Kunichika H, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Bosentan inhibits transient receptor potential channel expression in pulmonary vascular myocytes. Am J Respir Crit Care Med 170:1101–1107PubMedCrossRefGoogle Scholar
  93. 93.
    Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, Jiang W, Vangala N, Landsberg JW, Wang JY et al (2009) A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119:2313–2322PubMedCrossRefGoogle Scholar
  94. 94.
    Lu W, Ran P, Zhang D, Peng G, Li B, Zhong N, Wang J (2010) Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle. Am J Physiol Cell Physiol 298:C114–C123PubMedCrossRefGoogle Scholar
  95. 95.
    Wharton J, Strange JW, Moller GM, Growcott EJ, Ren X, Franklyn AP, Phillips SC, Wilkins MR (2005) Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med 172:105–113PubMedCrossRefGoogle Scholar
  96. 96.
    Yang J, Li X, Al-Lamki R, Wu C, Weiss A, Berk J, Schermuly RT, Morrell NW (2013) Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol 33:34–42PubMedCrossRefGoogle Scholar
  97. 97.
    Guilluy C, Sauzeau V, Rolli-Derkinderen M, Guerin P, Sagan C, Pacaud P, Loirand G (2005) Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. Br J Pharmacol 146:1010–1018PubMedCrossRefGoogle Scholar
  98. 98.
    Kuhr FK, Smith KA, Song MY, Levitan I, Yuan JX-J (2012) New mechanisms of pulmonary arterial hypertension: role of Ca2+ signaling. Am J Physiol Heart Circ Physiol 302:H1546–H1562PubMedCrossRefGoogle Scholar
  99. 99.
    Sarkar J, Gou D, Turaka P, Viktorova E, Ramchandran R, Raj JU (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol 299:L861–L871PubMedCrossRefGoogle Scholar
  100. 100.
    Wojciak-Stothard B, Zhao L, Oliver E, Dubois O, Wu Y, Kardassis D, Vasilaki E, Huang M, Mitchell JA, Harrington LS et al (2012) Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia. Circ Res 110:1423–1434PubMedCrossRefGoogle Scholar
  101. 101.
    Martin E, Dahan D, Cardouat G, Gillibert-Duplantier J, Marthan R, Savineau JP, Ducret T (2012) Involvement of TRPV1 and TRPV4 channels in migration of rat pulmonary arterial smooth muscle cells. Pflugers Arch 464:261–272PubMedCrossRefGoogle Scholar
  102. 102.
    Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005) Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434:786–792PubMedCrossRefGoogle Scholar
  103. 103.
    Monzani E, Bazzotti R, Perego C, La Porta CA (2009) AQP1 is not only a water channel: it contributes to cell migration through Lin7/beta-catenin. PLoS One 4:e6167PubMedCrossRefGoogle Scholar
  104. 104.
    Fantozzi I, Zhang S, Platoshyn O, Remillard CV, Cowling RT, Yuan JX (2003) Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 285:L1233–L1245PubMedGoogle Scholar
  105. 105.
    Paffett ML, Naik JS, Resta TC, Walker BR (2007) Reduced store-operated Ca2+ entry in pulmonary endothelial cells from chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 293:L1135–L1142PubMedCrossRefGoogle Scholar
  106. 106.
    Madden JA, Ray DE, Keller PA, Kleinman JG (2001) Ion exchange activity in pulmonary artery smooth muscle cells: the response to hypoxia. Am J Physiol Lung Cell Mol Physiol 280:L264–L271PubMedGoogle Scholar
  107. 107.
    Quinn DA, Honeyman TW, Joseph PM, Thompson BT, Hales CA, Scheid CR (1991) Contribution of Na+/H+ exchange to pH regulation in pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 5:586–591PubMedGoogle Scholar
  108. 108.
    Quinn DA, Dahlberg CG, Bonventre JP, Scheid CR, Honeyman T, Joseph PM, Thompson BT, Hales CA (1996) The role of Na+/H+ exchange and growth factors in pulmonary artery smooth muscle cell proliferation. Am J Respir Cell Mol Biol 14:139–145PubMedGoogle Scholar
  109. 109.
    Rios EJ, Fallon M, Wang J, Shimoda LA (2005) Chronic hypoxia elevates intracellular pH and activates Na+/H+ exchange in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 289(5):L867–L874PubMedCrossRefGoogle Scholar
  110. 110.
    Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL (2006) HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 291:L941–L949PubMedCrossRefGoogle Scholar
  111. 111.
    Quinn DA, Du HK, Thompson BT, Hales CA (1998) Amiloride analogs inhibit chronic hypoxic pulmonary hypertension. Am J Respir Crit Care Med 157:1263–1268PubMedGoogle Scholar
  112. 112.
    Yu L, Quinn DA, Garg HG, Hales CA (2008) Deficiency of the NHE1 gene prevents hypoxia-induced pulmonary hypertension and vascular remodeling. Am J Respir Crit Care Med 177:1276–1284PubMedCrossRefGoogle Scholar
  113. 113.
    Yu L, Hales CA (2011) Silencing of NHE1 attenuates PASMC proliferation, hypertrophy and migration via E2F1. Am J Respir Cell Mol Biol 45:923–930PubMedCrossRefGoogle Scholar
  114. 114.
    Cutaia MV, Parks N, Centracchio J, Rounds S, Yip KP, Sun AM (1998) Effect of hypoxic exposure on Na+/H+ antiport activity, isoform expression, and localization in endothelial cells. Am J Physiol 275:L442–L451PubMedGoogle Scholar
  115. 115.
    Phillips PG, Birnby LM, Narendran A (1995) Hypoxia induces capillary network formation in cultured bovine pulmonary microvessel endothelial cells. Am J Physiol 268:L789–L800PubMedGoogle Scholar
  116. 116.
    Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL (2000) Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H+ translocation. Mol Cell 6:1425–1436PubMedCrossRefGoogle Scholar
  117. 117.
    Maylor J, Lu W, Pisarcik S, Walker J, Undem C, Myers A, Shimoda L (2010) Reciprocal regulation of Na+/H+ exchanger isoform 1 and Na+/H+ exchange regulatory factor 1 in hypoxic pulmonary arterial smooth muscle cells. FASEB J 24:1023.4, AbstractGoogle Scholar
  118. 118.
    Mentzer RM Jr, Bartels C, Bolli R, Boyce S, Buckberg GD, Chaitman B, Haverich A, Knight J, Menasche P, Myers ML et al (2008) Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. Ann Thorac Surg 85:1261–1270PubMedCrossRefGoogle Scholar
  119. 119.
    Murphy E, Allen DG (2009) Why did the NHE inhibitor clinical trials fail? J Mol Cell Cardiol 46:137–141PubMedCrossRefGoogle Scholar
  120. 120.
    Oka M, Homma N, Taraseviciene-Stewart L, Morris KG, Kraskauskas D, Burns N, Voelkel NF, McMurtry IF (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923–929PubMedCrossRefGoogle Scholar
  121. 121.
    Ward JPT, Mcmurtry IF (2009) Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol 9:287–296PubMedCrossRefGoogle Scholar
  122. 122.
    Firth AL, Choi I-W, Park WS (2012) Animal models of pulmonary hypertension: Rho kinase inhibition. Prog Biophys Mol Biol 109:67–75PubMedCrossRefGoogle Scholar
  123. 123.
    Oka M, Fagan KA, Jones PL, McMurtry IF (2008) Therapeutic potential of RhoA/Rho kinase inhibitors in pulmonary hypertension. Br J Pharmacol 155:444–454PubMedCrossRefGoogle Scholar
  124. 124.
    Yang X, Lee PJ, Long L, Trembath RC, Morrell NW (2007) BMP4 induces HO-1 via a Smad-independent, p38MAPK-dependent pathway in pulmonary artery myocytes. Am J Respir Cell Mol Biol 37:598–605PubMedCrossRefGoogle Scholar
  125. 125.
    Gerthoffer WT (2007) Mechanisms of vascular smooth muscle cell migration. Circ Res 100:607–621PubMedCrossRefGoogle Scholar
  126. 126.
    Liu Y, Suzuki YJ, Day RM, Fanburg BL (2004) Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res 95:579–586PubMedCrossRefGoogle Scholar
  127. 127.
    Undem C, Rios EJ, Maylor J, Shimoda LA (2012) Endothelin-1 augments Na+/H+ exchange activity in murine pulmonary arterial smooth muscle cells via Rho kinase. PLoS One 7:e46303PubMedCrossRefGoogle Scholar
  128. 128.
    Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H (2005) Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 91:391–392PubMedCrossRefGoogle Scholar
  129. 129.
    Ishikura K, Yamada N, Ito M, Ota S, Nakamura M, Isaka N, Nakano T (2006) Beneficial acute effects of Rho-kinase inhibitor in patients with pulmonary arterial hypertension. Circ J 70:174–178PubMedCrossRefGoogle Scholar
  130. 130.
    Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H, McMurtry IF, Oka M (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171:494–499PubMedCrossRefGoogle Scholar
  131. 131.
    Fujita H, Fukumoto Y, Saji K, Sugimura K, Demachi J, Nawata J, Shimokawa H (2010) Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Hear Vessel 25:144–149CrossRefGoogle Scholar
  132. 132.
    Fagan KA, Oka M, Bauer NR, Gebb SA, Ivy DD, Morris KG, McMurtry IF (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L656–L664PubMedCrossRefGoogle Scholar
  133. 133.
    Abe K, Shimokawa H, Morikawa K, Uwatoku T, Oi K, Matsumoto Y, Hattori T, Nakashima Y, Kaibuchi K, Sueishi K et al (2004) Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res 94:385–393PubMedCrossRefGoogle Scholar
  134. 134.
    Girgis RE, Mozammel S, Champion HC, Li D, Peng X, Shimoda LA, Tuder RM, Johns RA, Hassoun PM (2007) Regression of chronic hypoxic pulmonary hypertension by simvastatin. Am J Physiol Lung Cell Mol Physiol 292:L1105–L1110PubMedCrossRefGoogle Scholar
  135. 135.
    Morrell NW, Yang X, Upton PD, Jourdan KB, Morgan N, Sheares KK, Trembath RC (2001) Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-β1 and bone morphogenetic proteins. Circulation 104:790–795PubMedCrossRefGoogle Scholar
  136. 136.
    Lu W, Ran P, Zhang D, Lai N, Zhong N, Wang J (2010) Bone morphogenetic protein 4 enhances canonical transient receptor potential expression, store-operated Ca2+ entry, and basal [Ca2+]i in rat distal pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 299:C1370–C1378PubMedCrossRefGoogle Scholar
  137. 137.
    Yang X, Long L, Southwood M, Rudarakanchana N, Upton PD, Jeffery TK, Atkinson C, Chen H, Trembath RC, Morrell NW (2005) Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053–1063PubMedCrossRefGoogle Scholar
  138. 138.
    Anderson L, Lowery JW, Frank DB, Novitskaya T, Jones M, Mortlock DP, Chandler RL, de Caestecker MP (2010) Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension. Am J Physiol Regul Integr Comp Physiol 298:R833–R842PubMedCrossRefGoogle Scholar
  139. 139.
    Frank DB, Abtahi A, Yamaguchi DJ, Manning S, Shyr Y, Pozzi A, Baldwin HS, Johnson JE, de Caestecker MP (2005) Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 97:496–504PubMedCrossRefGoogle Scholar
  140. 140.
    Du L, Sullivan CC, Chu D, Cho AJ, Kido M, Wolf PL, Yuan JX, Deutsch R, Jamieson SW, Thistlethwaite PA (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348:500–509PubMedCrossRefGoogle Scholar
  141. 141.
    Takahashi H, Goto N, Kojima Y, Tsuda Y, Morio Y, Muramatsu M, Fukuchi Y (2006) Downregulation of type II bone morphogenetic protein receptor in hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290:L450–L458PubMedCrossRefGoogle Scholar
  142. 142.
    Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, Karoubi G, Courtman DW, Zucco L, Granton J, Stewart DJ (2006) Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 98:209–217PubMedCrossRefGoogle Scholar
  143. 143.
    Gangopahyay A, Oran M, Bauer EM, Wertz JW, Comhair SA, Erzurum SC, Bauer PM (2011) Bone morphogenetic protein receptor II is a novel mediator of endothelial nitric-oxide synthase activation. J Biol Chem 286:33134–33140PubMedCrossRefGoogle Scholar
  144. 144.
    Hu H, Sung A, Zhao G, Shi L, Qiu D, Nishimura T, Kao PN (2006) Simvastatin enhances bone morphogenetic protein receptor type II expression. Biochem Biophys Res Commun 339:59–64PubMedCrossRefGoogle Scholar
  145. 145.
    Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T (1988) A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl 6:S188–S191PubMedGoogle Scholar
  146. 146.
    Shao D, Park JE, Wort SJ (2011) The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res 63:504–511PubMedCrossRefGoogle Scholar
  147. 147.
    Shimoda LA, Sham JS, Liu Q, Sylvester JT (2002) Acute and chronic hypoxic pulmonary vasoconstriction: a central role for endothelin-1? Respir Physiol Neurobiol 132:93–106PubMedCrossRefGoogle Scholar
  148. 148.
    Whitman EM, Pisarcik S, Luke T, Fallon M, Wang J, Sylvester JT, Semenza GL, Shimoda LA (2008) Endothelin-1 mediates hypoxia-induced inhibition of voltage-gated K+ channel expression in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 294:L309–L318PubMedCrossRefGoogle Scholar
  149. 149.
    Davie NJ, Schermuly RT, Weissmann N, Grimminger F, Ghofrani HA (2009) The science of endothelin-1 and endothelin receptor antagonists in the management of pulmonary arterial hypertension: current understanding and future studies. Eur J Clin Investig 39(Suppl 2):38–49CrossRefGoogle Scholar
  150. 150.
    Mair KM, MacLean MR, Morecroft I, Dempsie Y, Palmer TM (2008) Novel interactions between the 5-HT transporter, 5-HT1B receptors and Rho kinase in vivo and in pulmonary fibroblasts. Br J Pharmacol 155:606–616PubMedCrossRefGoogle Scholar
  151. 151.
    Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454PubMedGoogle Scholar
  152. 152.
    Semenza GL (2005) Pulmonary vascular responses to chronic hypoxia mediated by hypoxia-inducible factor 1. Proc Am Thorac Soc 2:68–70PubMedCrossRefGoogle Scholar
  153. 153.
    Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92:967–1003PubMedCrossRefGoogle Scholar
  154. 154.
    Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, Beaty T, Sham JS, Wiener CM, Sylvester JT et al (1999) Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J Clin Invest 103:691–696PubMedCrossRefGoogle Scholar
  155. 155.
    Shimoda LA, Semenza GL (2011) HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med 183:152–156PubMedCrossRefGoogle Scholar
  156. 156.
    Shimoda LA (2012) 55th Bowditch lecture: effects of chronic hypoxia on the pulmonary circulation: role of HIF-1. J Appl Physiol 113:1343–1352PubMedCrossRefGoogle Scholar
  157. 157.
    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149–162PubMedCrossRefGoogle Scholar
  158. 158.
    Brusselmans K, Compernolle V, Tjwa M, Wiesener MS, Maxwell PH, Collen D, Carmeliet P (2003) Heterozygous deficiency of hypoxia-inducible factor-2α protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest 111:1519–1527PubMedGoogle Scholar
  159. 159.
    Shimoda LA (2010) Hypoxic regulation of ion channels and transporters in pulmonary vascular smooth muscle. Adv Exp Med Biol 661:221–235PubMedCrossRefGoogle Scholar
  160. 160.
    Abud EM, Maylor J, Undem C, Punjabi A, Zaiman AL, Myers AC, Sylvester JT, Semenza GL, Shimoda LA (2012) Digoxin inhibits development of hypoxic pulmonary hypertension in mice. Proc Natl Acad Sci U S A 109:1239–1244PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care Medicine, Department of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations