Journal of Molecular Medicine

, Volume 91, Issue 2, pp 157–164

Adenosine and gastrointestinal inflammation

  • Sean P. Colgan
  • Blair Fennimore
  • Stefan F. Ehrentraut
Review
  • 562 Downloads

Abstract

Nucleosides such as adenosine (Ado) influence nearly every aspect of physiology and pathophysiology. Extracellular nucleotides liberated at local sites of inflammation are metabolized through regulated phosphohydrolysis by a series of ecto-nucleotidases including ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and ecto-5′-nucleotidase (CD73), found on the surface of a variety of cell types. Once generated, Ado is made available to bind and activate one of four G protein-coupled Ado receptors. Recent in vitro and in vivo studies implicate Ado in a broad array of tissue-protective mechanisms that provide new insight into adenosine actions. Studies in cultured cells and murine tissues have indicated that Ado receptors couple to novel posttranslational protein modifications, including Cullin deneddylation, as a new anti-inflammatory mechanism. Studies in Ado receptor-null mice have been revealing and indicate a particularly important role for the Ado A2B receptor in animal models of intestinal inflammation. Here, we review contributions of Ado to cell and tissue stress responses, with a particular emphasis on the gastrointestinal mucosa.

Keywords

Mucosa Inflammation Colitis Neutrophil Epithelium Endothelium Murine model 

References

  1. 1.
    Zimmermann H, Braun N (1999) Ecto-nucleotidases—molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120:371–385PubMedCrossRefGoogle Scholar
  2. 2.
    Linden J (2001) Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787PubMedCrossRefGoogle Scholar
  3. 3.
    Madara JL, Parkos CA, Colgan SP, MacLeod RJ, Nash S, Matthews J, Delp C, Lencer WS (1992) Cl-secretion in a model intestinal epithelium induced by a neutrophil-derived secretagogue. J Clin Invest 89:1938–1944PubMedCrossRefGoogle Scholar
  4. 4.
    Madara JL, Patapoff TW, Gillece-Castro B, Colgan SP, Parkos CA, Delp C, Mrsny RJ (1993) 5′-Adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest 91:2320–2325PubMedCrossRefGoogle Scholar
  5. 5.
    Strohmeier GR, Lencer WI, Patapoff TW, Thompson LF, Carlson SL, Moe SJ, Mrsny RJ, Madara JL (1997) Surface expression, polarization, and functional significance of CD73 in human intestinal epithelia. J Clin Invest 99:2588–2601PubMedCrossRefGoogle Scholar
  6. 6.
    Strohmeier GR, Reppert SM, Lencer WI, Madara JL (1995) The A2b adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. J Biol Chem 270:2387–2394PubMedCrossRefGoogle Scholar
  7. 7.
    Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Voyno-Yasenetskaya T, Biaggioni I (2002) Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res 90:531–538PubMedCrossRefGoogle Scholar
  8. 8.
    Ryzhov S, Goldstein AE, Biaggioni I, Feoktistov I (2006) Cross-talk between G(s)- and G(q)-coupled pathways in regulation of interleukin-4 by A(2B) adenosine receptors in human mast cells. Mol Pharmacol 70:727–735, Epub 2006 May 2017PubMedCrossRefGoogle Scholar
  9. 9.
    Chin AC, Parkos CA (2007) Pathobiology of neutrophil transepithelial migration: implications in mediating epithelial injury. Annu Rev Pathol 2:111–143PubMedCrossRefGoogle Scholar
  10. 10.
    Ley K (2001) Plugging the leaks. Nat Med 7:1105–1106PubMedCrossRefGoogle Scholar
  11. 11.
    Lennon PF, Taylor CT, Stahl GL, Colgan SP (1998) Neutrophil-derived 5′-adenosine monophosphate promotes endothelial barrier function via CD73-mediated conversion to adenosine and endothelial A2B receptor activation. J Exp Med 188:1433–1443PubMedCrossRefGoogle Scholar
  12. 12.
    Reinhard M, Halbrugge M, Scheer U, Wiegand C, Jockusch BM, Walter U (1992) The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 11:2063–2070PubMedGoogle Scholar
  13. 13.
    Lawrence DW, Comerford KM, Colgan SP (2002) Role of VASP in reestablishment of epithelial tight junction assembly after Ca2+ switch. Am J Physiol Cell Physiol 282:C1235–C1245PubMedGoogle Scholar
  14. 14.
    Comerford KM, Lawrence DW, Synnestvedt K, Levi BP, Colgan SP (2002) Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J 16:583–585PubMedGoogle Scholar
  15. 15.
    Aherne CM, Kewley EM, Eltzschig HK (2010) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta 1808(5):1329–1339PubMedGoogle Scholar
  16. 16.
    Eckle T, Koeppen M, Eltzschig HK (2009) Role of extracellular adenosine in acute lung injury. Physiol (Bethesda) 24:298–306CrossRefGoogle Scholar
  17. 17.
    Eltzschig HK (2009) Adenosine: an old drug newly discovered. Anesthesiology 111:904–915PubMedCrossRefGoogle Scholar
  18. 18.
    Eltzschig HK, Eckle T, Mager A, Kuper N, Karcher C, Weissmuller T, Boengler K, Schulz R, Robson SC, Colgan SP (2006) ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ Res 99:1100–1108PubMedCrossRefGoogle Scholar
  19. 19.
    Eltzschig HK, Ibla JC, Furuta GT, Leonard MO, Jacobson KA, Enjyoji K, Robson SC, Colgan SP (2003) Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med 198:783–796PubMedCrossRefGoogle Scholar
  20. 20.
    Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294PubMedCrossRefGoogle Scholar
  21. 21.
    Jara PI, Boric MP, Saez JC (1995) Leukocytes express connexin 43 after activation with lipopolysaccharide and appear to from gap junctions with endothelial cells after ischemia-reperfusion. Proc Nat Acad Sci (USA) 92:7011–7015CrossRefGoogle Scholar
  22. 22.
    Novak I (2003) ATP as a signaling molecule: the exocrine focus. News Physiol Sci 18:12–17PubMedGoogle Scholar
  23. 23.
    Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795PubMedCrossRefGoogle Scholar
  24. 24.
    Linden J (2006) Purinergic chemotaxis. Science 314:1689–1690PubMedCrossRefGoogle Scholar
  25. 25.
    Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233:309–319PubMedGoogle Scholar
  26. 26.
    Weissmuller T, Campbell EL, Rosenberger P, Scully M, Beck PL, Furuta GT, Colgan SP (2008) PMNs facilitate translocation of platelets across human and mouse epithelium and together alter fluid homeostasis via epithelial cell-expressed ecto-NTPDases. J Clin Invest 118:3682–3692PubMedCrossRefGoogle Scholar
  27. 27.
    Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M (2004) Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:657–682PubMedCrossRefGoogle Scholar
  28. 28.
    Eltzschig HK, Rivera-Nieves J, Colgan SP (2009) Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation. Expert Opin Ther Targets 13:1267–1277PubMedCrossRefGoogle Scholar
  29. 29.
    Kumar S, Tomooka Y, Noda M (1992) Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun 185:1155–1161PubMedCrossRefGoogle Scholar
  30. 30.
    Kamitani T, Kito K, Nguyen HP, Yeh ET (1997) Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 272:28557–28562PubMedCrossRefGoogle Scholar
  31. 31.
    Mikus P, Zundel W (2005) COPing with hypoxia. Semin Cell Dev Biol 16:462–473PubMedCrossRefGoogle Scholar
  32. 32.
    Jones D, Crowe E, Stevens TA, and Candido EP (2002) Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol 3:RESEARCH0002Google Scholar
  33. 33.
    Osaka F, Saeki M, Katayama S, Aida N, Toh EA, Kominami K, Toda T, Suzuki T, Chiba T, Tanaka K et al (2000) Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J 19:3475–3484PubMedCrossRefGoogle Scholar
  34. 34.
    Tateishi K, Omata M, Tanaka K, Chiba T (2001) The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. J Cell Biol 155:571–579PubMedCrossRefGoogle Scholar
  35. 35.
    Ou CY, Lin YF, Chen YJ, Chien CT (2002) Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev 16:2403–2414PubMedCrossRefGoogle Scholar
  36. 36.
    Wada H, Kito K, Caskey LS, Yeh ET, Kamitani T (1998) Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem Biophys Res Commun 251:688–692PubMedCrossRefGoogle Scholar
  37. 37.
    Huang DT, Miller DW, Mathew R, Cassell R, Holton JM, Roussel MF, Schulman BA (2004) A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat Struct Mol Biol 11:927–935PubMedCrossRefGoogle Scholar
  38. 38.
    Mendoza HM, Shen LN, Botting C, Lewis A, Chen J, Ink B, Hay RT (2003) NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J Biol Chem 278:25637–25643PubMedCrossRefGoogle Scholar
  39. 39.
    Wu K, Yamoah K, Dolios G, Gan-Erdene T, Tan P, Chen A, Lee CG, Wei N, Wilkinson KD, Wang R et al (2003) DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1. J Biol Chem 278:28882–28891PubMedCrossRefGoogle Scholar
  40. 40.
    Liakopoulos D, Doenges G, Matuschewski K, Jentsch S (1998) A novel protein modification pathway related to the ubiquitin system. EMBO J 17:2208–2214PubMedCrossRefGoogle Scholar
  41. 41.
    Hori T, Osaka F, Chiba T, Miyamoto C, Okabayashi K, Shimbara N, Kato S, Tanaka K (1999) Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18:6829–6834PubMedCrossRefGoogle Scholar
  42. 42.
    Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan ZQ, Huang L (2008) A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. J Proteome Res 7:1274–1287PubMedCrossRefGoogle Scholar
  43. 43.
    Parry G, Estelle M (2004) Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Semin Cell Dev Biol 15:221–229PubMedCrossRefGoogle Scholar
  44. 44.
    Amir RE, Iwai K, Ciechanover A (2002) The NEDD8 pathway is essential for SCF(beta -TrCP)-mediated ubiquitination and processing of the NF-kappa B precursor p105. J Biol Chem 277:23253–23259PubMedCrossRefGoogle Scholar
  45. 45.
    Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428PubMedGoogle Scholar
  46. 46.
    Colgan SP, Taylor CT (2010) Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol 7:281–287PubMedCrossRefGoogle Scholar
  47. 47.
    Khoury J, Ibla JC, Neish AS, Colgan SP (2007) Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. J Clin Invest 117:703–711PubMedCrossRefGoogle Scholar
  48. 48.
    Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmali V, Rao AS, Madara JL (2000) Prokaryotic regulation of epithelial responses by inhibition of IkappaB- alpha ubiquitination. Science 289:1560–1563PubMedCrossRefGoogle Scholar
  49. 49.
    Kumar A, Wu H, Collier-Hyams LS, Kwon YM, Hanson JM, Neish AS (2009) The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species-mediated changes in cullin-1 neddylation. J Immunol 182:538–546PubMedGoogle Scholar
  50. 50.
    Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785, Epub 12007 Aug 13715PubMedCrossRefGoogle Scholar
  51. 51.
    Kumar A, Wu H, Collier-Hyams LS, Hansen JM, Li T, Yamoah K, Pan ZQ, Jones DP, Neish AS (2007) Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J 26:4457–4466PubMedCrossRefGoogle Scholar
  52. 52.
    Ehrentraut S, Frede S, Stapel H, Mengden T, Grohe C, Fandrey J, Meyer R, Baumgarten G (2007) Antagonism of lipopolysaccharide-induced blood pressure attenuation and vascular contractility. Arterioscler Thromb Vasc Biol 27:2170–2176, Epub 2007 Jul 2126PubMedCrossRefGoogle Scholar
  53. 53.
    MacManus CF, Campbell EL, Keely S, Burgess A, Kominsky DJ, Colgan SP (2011) Anti-inflammatory actions of adrenomedullin through fine tuning of HIF stabilization. FASEB J 25:1856–1864PubMedCrossRefGoogle Scholar
  54. 54.
    Ehrentraut SF, Kominsky DJ, Glover LE, Campbell EL, Kelly CJ, Bowers BE, Bayless AJ, and Colgan SP (2013) Central role for endothelial human deneddylase-1/SENP8 in fine-tuning the vascular inflammatory response. J Immunol 190:392-400Google Scholar
  55. 55.
    Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S et al (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732–736PubMedCrossRefGoogle Scholar
  56. 56.
    Chang FM, Reyna SM, Granados JC, Wei SJ, Innis-Whitehouse W, Maffi SK, Rodriguez E, Slaga TJ, Short JD (2012) Inhibition of neddylation represses lipopolysaccharide-induced proinflammatory cytokine production in macrophage cells. J Biol Chem 287:35756–35767PubMedCrossRefGoogle Scholar
  57. 57.
    Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920PubMedCrossRefGoogle Scholar
  58. 58.
    Rosenberger P, Schwab JM, Mirakaj V, Masekowsky E, Mager A, Morote-Garcia JC, Unertl K, Eltzschig HK (2009) Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 10:195–202PubMedCrossRefGoogle Scholar
  59. 59.
    Eckle T, Grenz A, Laucher S, Eltzschig HK (2008) A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J Clin Invest 118:3301–3315PubMedGoogle Scholar
  60. 60.
    Naganuma M, Wiznerowicz EB, Lappas CM, Linden J, Worthington MT, Ernst PB (2006) Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol 177:2765–2769PubMedGoogle Scholar
  61. 61.
    Frick JS, MacManus CF, Scully M, Glover LE, Eltzschig HK, Colgan SP (2009) Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J Immunol 182:4957–4964PubMedCrossRefGoogle Scholar
  62. 62.
    Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK (2008) A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111:2024–2035PubMedCrossRefGoogle Scholar
  63. 63.
    Hart M, Jacobi B, Schittenhelm J, Henn M, Eltzschig HK (2009) A2B adenosine receptor signaling provides potent protection during intestinal ischemia/reperfusion injury. J Immunol 182:3965–3968PubMedCrossRefGoogle Scholar
  64. 64.
    Grenz A, Osswald H, Eckle T, Yang D, Zhang H, Tran ZV, Klingel K, Ravid K, Eltzschig HK (2008) The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med 5:e137PubMedCrossRefGoogle Scholar
  65. 65.
    Eckle T, Kohler D, Lehmann R, El Kasmi KC, Eltzschig HK (2008) Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation 118:166–175PubMedCrossRefGoogle Scholar
  66. 66.
    Eckle T, Krahn T, Grenz A, Kohler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K et al (2007) Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115:1581–1590PubMedCrossRefGoogle Scholar
  67. 67.
    Yang D, Koupenova M, McCrann DJ, Kopeikina KJ, Kagan HM, Schreiber BM, Ravid K (2008) The A2b adenosine receptor protects against vascular injury. Proc Natl Acad Sci U S A 105:792–796PubMedCrossRefGoogle Scholar
  68. 68.
    Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, St Hilaire C, Seldin DC, Toselli P et al (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest 116:1913–1923PubMedCrossRefGoogle Scholar
  69. 69.
    Hasegawa T, Bouis D, Liao H, Visovatti SH, Pinsky DJ (2008) Ecto-5′ nucleotidase (CD73)-mediated adenosine generation and signaling in murine cardiac allograft vasculopathy. Circ Res 103:1410–1421PubMedCrossRefGoogle Scholar
  70. 70.
    Kolachala V, Ruble B, Vijay-Kumar M, Wang L, Mwangi S, Figler H, Figler R, Srinivasan S, Gewirtz A, Linden J et al (2008) Blockade of adenosine A2B receptors ameliorates murine colitis. Br J Pharmacol 155:127–137PubMedCrossRefGoogle Scholar
  71. 71.
    Kolachala VL, Vijay-Kumar M, Dalmasso G, Yang D, Linden J, Wang L, Gewirtz A, Ravid K, Merlin D, Sitaraman SV (2008) A2B adenosine receptor gene deletion attenuates murine colitis. Gastroenterology 135(3):861–870PubMedCrossRefGoogle Scholar
  72. 72.
    Warren CA, Li Y, Calabrese GM, Freire RS, Zaja-Milatovic S, van Opstal E, Figler RA, Linden J, Guerrant RL (2012) Contribution of adenosine A2B receptors in Clostridium difficile intoxication and infection. Infect Immun 8:8Google Scholar
  73. 73.
    Kolachala V, Asamoah V, Wang L, Obertone TS, Ziegler TR, Merlin D, Sitaraman SV (2005) TNF-alpha upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell Mol Life Sci 62:2647–2657PubMedCrossRefGoogle Scholar
  74. 74.
    Ryzhov S, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2012) Role of A2B adenosine receptors in regulation of paracrine functions of stem cell antigen 1-positive cardiac stromal cells. J Pharmacol Exp Ther 341:764–774, Epub 2012 Mar 2019PubMedCrossRefGoogle Scholar
  75. 75.
    Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2008) Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J Pharmacol Exp Ther 324:694–700, Epub 2007 Oct 2026PubMedCrossRefGoogle Scholar
  76. 76.
    Sitaraman SV, Merlin D, Wang L, Wong M, Gewirtz AT, Si-Tahar M, Madara JL (2001) Neutrophil-epithelial crosstalk at the intestinal lumenal surface mediated by reciprocal secretion of adenosine and IL-6. J Clin Invest 107:861–869PubMedCrossRefGoogle Scholar
  77. 77.
    Thompson LF, Eltzschig HK, Ibla JC, Van De Wiele CJ, Resta R, Morote-Garcia JC, Colgan SP (2004) Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 200:1395–1405PubMedCrossRefGoogle Scholar
  78. 78.
    Blumberg RS, Saubermann LJ, Strober W (1999) Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol 11:648–656PubMedCrossRefGoogle Scholar
  79. 79.
    Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I, Carbone DP, Feoktistov I et al (2008) Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 112:1822–1831, Epub 2008 Jun 1817PubMedCrossRefGoogle Scholar
  80. 80.
    Butler M, Sanmugalingam D, Burton VJ, Wilson T, Pearson R, Watson RP, Smith P, Parkinson SJ (2012) Impairment of adenosine a3 receptor activity disrupts neutrophil migratory capacity and impacts innate immune function in vivo. Eur J Immunol 2:201242655Google Scholar
  81. 81.
    Mabley J, Soriano F, Pacher P, Hasko G, Marton A, Wallace R, Salzman A, Szabo C (2003) The adenosine A3 receptor agonist, N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide, is protective in two murine models of colitis. Eur J Pharmacol 466:323–329PubMedCrossRefGoogle Scholar
  82. 82.
    Rybaczyk L, Rozmiarek A, Circle K, Grants I, Needleman B, Wunderlich JE, Huang K, Christofi FL (2009) New bioinformatics approach to analyze gene expressions and signaling pathways reveals unique purine gene dysregulation profiles that distinguish between CD and UC. Inflamm Bowel Dis 15:971–984PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sean P. Colgan
    • 1
  • Blair Fennimore
    • 1
  • Stefan F. Ehrentraut
    • 1
  1. 1.Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations