Journal of Molecular Medicine

, Volume 91, Issue 3, pp 369–380 | Cite as

Combination of MEK-ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment

  • Indira PrasadamEmail author
  • Xinzhan Mao
  • Wei Shi
  • Ross Crawford
  • Yin Xiao
Original Article


We hypothesised that a potentially disease-modifying osteoarthritis (OA) drug such as hyaluronic acid (HA) given in combination with anti-inflammatory signalling agents such as mitogen-activated protein kinase kinase–extracellular signal-regulated kinase (MEK-ERK) signalling inhibitor (U0126) could result in additive or synergistic effects on preventing the degeneration of articular cartilage. Chondrocyte differentiation and hypertrophy were evaluated using human OA primary cells treated with either HA or U0126, or the combination of HA + U0126. Cartilage degeneration in menisectomy (MSX) induced rat OA model was investigated by intra-articular delivery of either HA or U0126, or the combination of HA + U0126. Histology, immunostaining, RT-qPCR, Western blotting and zymography were performed to assess the expression of cartilage matrix proteins and hypertrophic markers. Phosphorylated ERK (pERK)1/2-positive chondrocytes were significantly higher in OA samples compared with those in healthy control suggesting the pathological role of that pathway in OA. It was noted that HA + U0126 significantly reduced the levels of pERK, chondrocyte hypertrophic markers (COL10 and RUNX2) and degenerative markers (ADAMTs5 and MMP-13), however, increased the levels of chondrogenic markers (COL2) compared to untreated or the application of HA or U0126 alone. In agreement with the results in vitro, intra-articular delivery of HA + U0126 showed significant therapeutic improvement of cartilage in rat MSX OA model compared with untreated or the application of HA or U0126 alone. Our study suggests that the combination of HA and MEK-ERK inhibition has a synergistic effect on preventing cartilage degeneration.


Osteoarthritis Mitogen-activated protein kinase Extracellular signal-regulated kinase signalling Animal model Hyaluronic acid 



The authors would like to thank NHMRC, Australian Orthopaedic Association and Prince Charles Hospital Foundation for providing the funding. The authors would also like to thank the staff at the Medical Engineering research facility for assisting the animal work.

Competing interests

The authors declare no conflict of interest.


  1. 1.
    Berenbaum F (2007) The quest for the Holy Grail: a disease-modifying osteoarthritis drug. Arthritis Res Ther 9:111PubMedCrossRefGoogle Scholar
  2. 2.
    Daheshia M, Yao JQ (2008) The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J Rheumatol 35:2306–2312PubMedCrossRefGoogle Scholar
  3. 3.
    Krzeski P, Buckland-Wright C, Balint G, Cline GA, Stoner K, Lyon R, Beary J, Aronstein WS, Spector TD (2007) Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther 9:R109PubMedCrossRefGoogle Scholar
  4. 4.
    Pelletier JP, Fernandes JC, Brunet J, Moldovan F, Schrier D, Flory C, Martel-Pelletier J (2003) In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes. Arthritis Rheum 48:1582–1593PubMedCrossRefGoogle Scholar
  5. 5.
    Papachristou DJ, Pirttiniemi P, Kantomaa T, Papavassiliou AG, Basdra EK (2005) JNK/ERK-AP-1/Runx2 induction “paves the way” to cartilage load-ignited chondroblastic differentiation. Histochem Cell Biol 124:215–223PubMedCrossRefGoogle Scholar
  6. 6.
    Sondergaard BC, Schultz N, Madsen SH, Bay-Jensen AC, Kassem M, Karsdal MA (2010) MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation—divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthr Cartil 18:279–288PubMedCrossRefGoogle Scholar
  7. 7.
    Fan Z, Yang H, Bau B, Soder S, Aigner T (2006) Role of mitogen-activated protein kinases and NFkappaB on IL-1beta-induced effects on collagen type II, MMP-1 and 13 mRNA expression in normal articular human chondrocytes. Rheumatol Int 26:900–903PubMedCrossRefGoogle Scholar
  8. 8.
    Thalhamer T, McGrath MA, Harnett MM (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford) 47:409–414CrossRefGoogle Scholar
  9. 9.
    Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y (2008) Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis 67(Suppl 3):iii75–iii82PubMedCrossRefGoogle Scholar
  10. 10.
    Gigante A, Callegari L (2011) The role of intra-articular hyaluronan (Sinovial((R))) in the treatment of osteoarthritis. Rheumatol Int 31(4):427–444PubMedCrossRefGoogle Scholar
  11. 11.
    Plaas A, Li J, Riesco J, Das R, Sandy JD, Harrison A (2011) Intraarticular injection of hyaluronan prevents cartilage erosion, periarticular fibrosis and mechanical allodynia and normalizes stance time in murine knee osteoarthritis. Arthritis Res Ther 13:R46PubMedCrossRefGoogle Scholar
  12. 12.
    Gerwin N, Hops C, Lucke A (2006) Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev 58:226–242PubMedCrossRefGoogle Scholar
  13. 13.
    Tang JL, Chen WP, Xiong Y, Hu PF, Wu LD (2010) The anti-inflammatory effects of apocynin, inhibitor of NADPH oxidase, contrasting hyaluronic acid on articular cartilage during the development of osteoarthritis in a rabbit model. Biomed Pharmacother. doi: 10.1016/j.biopha.2010.08.002
  14. 14.
    Julovi SM, Ito H, Nishitani K, Jackson CJ, Nakamura T (2011) Hyaluronan inhibits matrix metalloproteinase-13 in human arthritic chondrocytes via CD44 and P38. J Orthop Res 29:258–264PubMedCrossRefGoogle Scholar
  15. 15.
    Appleton CT, Usmani SE, Mort JS, Beier F (2010) Rho/ROCK and MEK/ERK activation by transforming growth factor-alpha induces articular cartilage degradation. Lab Invest 90:20–30PubMedCrossRefGoogle Scholar
  16. 16.
    Shakibaei M, Schulze-Tanzil G, de Souza P, John T, Rahmanzadeh M, Rahmanzadeh R, Merker HJ (2001) Inhibition of mitogen-activated protein kinase kinase induces apoptosis of human chondrocytes. J Biol Chem 276:13289–13294PubMedCrossRefGoogle Scholar
  17. 17.
    Jo SK, Cho WY, Sung SA, Kim HK, Won NH (2005) MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int 67:458–466PubMedCrossRefGoogle Scholar
  18. 18.
    Thiel MJ, Schaefer CJ, Lesch ME, Mobley JL, Dudley DT, Tecle H, Barrett SD, Schrier DJ, Flory CM (2007) Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. Arthritis Rheum 56:3347–3357PubMedCrossRefGoogle Scholar
  19. 19.
    Duan W, Chan JH, Wong CH, Leung BP, Wong WS (2004) Anti-inflammatory effects of mitogen-activated protein kinase kinase inhibitor U0126 in an asthma mouse model. J Immunol 172:7053–7059PubMedGoogle Scholar
  20. 20.
    Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV, Alessandrini A (2001) Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci U S A 98:11569–11574PubMedCrossRefGoogle Scholar
  21. 21.
    Cho DG, Mulloy MR, Chang PA, Johnson MD, Aharon AS, Robison TA, Buckles TL, Byrne DW, Drinkwater DC Jr (2004) Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest. J Thorac Cardiovasc Surg 127:1033–1040PubMedCrossRefGoogle Scholar
  22. 22.
    Prasadam I, van Gennip S, Friis T, Shi W, Crawford R, Xiao Y (2010) ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts. Arthritis Rheum 62:1349–1360PubMedCrossRefGoogle Scholar
  23. 23.
    Mankin HJ, Buckwalter JA (2000) Articular cartilage structure, composition and function, 2nd edn. American Academy of Orthopaedic Surgeons, RosemontGoogle Scholar
  24. 24.
    Mankin HJ, Dorfman H, Lippiello L, Zarins A (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:523–537PubMedGoogle Scholar
  25. 25.
    Prasadam I, Friis T, Shi W, van Gennip S, Crawford R, Xiao Y (2010) Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2. Bone 46:226–235PubMedCrossRefGoogle Scholar
  26. 26.
    Wei A, Williams LA, Bhargav D, Shen B, Kishen T, Duffy N, Diwan AD (2009) BMP13 prevents the effects of annular injury in an ovine model. Int J Biol Sci 5:388–396PubMedCrossRefGoogle Scholar
  27. 27.
    Bendele AM (2001) Animal models of osteoarthritis. J Musculoskelet Neuronal Interact 1:363–376PubMedGoogle Scholar
  28. 28.
    Bendele AM (2002) Animal models of osteoarthritis in an era of molecular biology. J Musculoskelet Neuronal Interact 2:501–503PubMedGoogle Scholar
  29. 29.
    Abramson SB, Attur M, Yazici Y (2006) Prospects for disease modification in osteoarthritis. Nat Clin Pract Rheumatol 2:304–312PubMedCrossRefGoogle Scholar
  30. 30.
    Loeser RF, Erickson EA, Long DL (2008) Mitogen-activated protein kinases as therapeutic targets in osteoarthritis. Curr Opin Rheumatol 20:581–586PubMedCrossRefGoogle Scholar
  31. 31.
    Assoian RK (2002) Common sense signalling. Nat Cell Biol 4:E187–E188PubMedCrossRefGoogle Scholar
  32. 32.
    Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275PubMedCrossRefGoogle Scholar
  33. 33.
    Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J (2002) Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 4:556–564PubMedGoogle Scholar
  34. 34.
    Dreier R (2010) Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res Ther 12:216PubMedCrossRefGoogle Scholar
  35. 35.
    Provot S, Nachtrab G, Paruch J, Chen AP, Silva A, Kronenberg HM (2008) A-raf and B-raf are dispensable for normal endochondral bone development, and parathyroid hormone-related peptide suppresses extracellular signal-regulated kinase activation in hypertrophic chondrocytes. Mol Cell Biol 28:344–357PubMedCrossRefGoogle Scholar
  36. 36.
    Wang X, Manner PA, Horner A, Shum L, Tuan RS, Nuckolls GH (2004) Regulation of MMP-13 expression by RUNX2 and FGF2 in osteoarthritic cartilage. Osteoarthr Cartil 12:963–973PubMedCrossRefGoogle Scholar
  37. 37.
    Gonzalez-Fuentes AM, Green DM, Rossen RD, Ng B (2010) Intra-articular hyaluronic acid increases cartilage breakdown biomarker in patients with knee osteoarthritis. Clin Rheumatol 29:619–624PubMedCrossRefGoogle Scholar
  38. 38.
    Gibbs P, Brown TJ, Ng R, Jennens R, Cinc E, Pho M, Michael M, Fox RM (2009) A pilot human evaluation of a formulation of irinotecan and hyaluronic acid in 5-fluorouracil-refractory metastatic colorectal cancer patients. Chemotherapy 55:49–59PubMedCrossRefGoogle Scholar
  39. 39.
    Hahn SK, Kim JS, Shimobouji T (2007) Injectable hyaluronic acid microhydrogels for controlled release formulation of erythropoietin. J Biomed Mater Res A 80:916–924PubMedGoogle Scholar
  40. 40.
    Miyakoshi N, Kobayashi M, Nozaka K, Okada K, Shimada Y, Itoi E (2005) Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits. Arch Orthop Trauma Surg 125:683–692PubMedCrossRefGoogle Scholar
  41. 41.
    Hedberg EL, Shih CK, Solchaga LA, Caplan AI, Mikos AG (2004) Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers. J Control Release 100:257–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Indira Prasadam
    • 1
    Email author
  • Xinzhan Mao
    • 1
    • 2
  • Wei Shi
    • 1
  • Ross Crawford
    • 1
    • 3
  • Yin Xiao
    • 1
  1. 1.Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
  2. 2.Department of Orthopaedic Surgery, The Second Xiangya HospitalCentral South UniversityChangshaChina
  3. 3.Prince Charles HospitalBrisbaneAustralia

Personalised recommendations