Journal of Molecular Medicine

, Volume 91, Issue 1, pp 103–115 | Cite as

EphA2-mediated mesenchymal–amoeboid transition induced by endothelial progenitor cells enhances metastatic spread due to cancer-associated fibroblasts

  • Elisa Giannoni
  • Maria Letizia Taddei
  • Matteo Parri
  • Francesca Bianchini
  • Michela Santosuosso
  • Renata Grifantini
  • Gabriella Fibbi
  • Benedetta Mazzanti
  • Lido Calorini
  • Paola ChiarugiEmail author
Original Article


Tumor progression is deeply influenced by epigenetic changes induced by tumor stroma. Cancer-associated fibroblasts (CAFs) have been reported to promote epithelial–mesenchymal transition in cancer cells, thereby enhancing their aggressiveness and stem-like properties. As CAFs are able to recruit endothelial progenitor cells (EPCs) to tumor site, we aim to investigate their interplay for prostate carcinoma progression. Both prostate CAFs and cancer cells actively recruit EPCs, known to affect tumor progression through increased vasculogenesis. EPCs synergize with CAFs to further promote epigenetic plasticity of cancer cells, through a mesenchymal-to-amoeboid transition. Indeed, after fibroblasts have engaged epithelial–mesenchymal transition in cancer cells, a further shift towards amoeboid motility is promoted by EPCs through contact-mediated triggering of the bidirectional ephrinA1/EphA2 signaling. The activation of ephrinA1 reverse pathway enhances EPC-induced neo-vascularization, thus promoting tumor growth, while EphA2 forward signaling elicits mesenchymal–amoeboid transition in cancer cells, favoring their adhesion to endothelium, transendothelial migration, and lung metastatic colonization. We therefore underscore that the metastatic advantage given by tumor microenvironment embraces different motility strategies and propose EphA2-targeted tools as useful adjuvants in anti-metastatic treatments.


Cancer-associated fibroblasts Endothelial progenitor cells Ephrins Mesenchymal-to-amoeboid transition Vasculogenesis 



This work was supported by the Associazione Italiana Ricerca sul Cancro (AIRC), by Istituto Toscano Tumori and Regione Toscana (TUMAR). We thank Dr. Sergio Serni for prostate surgical specimens and Eugenio Torre for histological analyses.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

109_2012_941_Fig8_ESM.jpg (761 kb)

(JPEG 761 kb)

109_2012_941_MOESM1_ESM.tif (6.7 mb)
ESM 1 High resolution image (TIFF 6881 kb)
109_2012_941_MOESM2_ESM.doc (30 kb)
ESM 2 (DOC 30 kb)

(MOV 2947 kb)


(MOV 665 kb)


(MOV 1196 kb)


(MOV 845 kb)


(MOV 949 kb)


  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  2. 2.
    Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150PubMedCrossRefGoogle Scholar
  3. 3.
    Cirri P, Chiarugi P (2011) Cancer associated fibroblasts: the dark side of the coin. Am J Cancer Res 1:482–497PubMedGoogle Scholar
  4. 4.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401PubMedCrossRefGoogle Scholar
  5. 5.
    Cirri P, Chiarugi P (2011) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31:195–208CrossRefGoogle Scholar
  6. 6.
    Giannoni E, Parri M, Chiarugi P (2012) EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal 16:1248–1263PubMedCrossRefGoogle Scholar
  7. 7.
    Kalluri R, Weinberg RA (2009) The basics of epithelial–mesenchymal transition. J Clin Invest 119:1420–1428PubMedCrossRefGoogle Scholar
  8. 8.
    Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMedCrossRefGoogle Scholar
  9. 9.
    Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16:14–23PubMedCrossRefGoogle Scholar
  10. 10.
    Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, Chiarugi P (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial–mesenchymal transition and cancer stemness. Cancer Res 70:6945–6956PubMedCrossRefGoogle Scholar
  11. 11.
    Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374PubMedCrossRefGoogle Scholar
  12. 12.
    Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7:737–749PubMedCrossRefGoogle Scholar
  13. 13.
    Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188:11–19PubMedCrossRefGoogle Scholar
  14. 14.
    Parri M, Taddei ML, Bianchini F, Calorini L, Chiarugi P (2009) EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Res 69:2072–2081PubMedCrossRefGoogle Scholar
  15. 15.
    Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P (2003) Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160:267–277PubMedCrossRefGoogle Scholar
  16. 16.
    Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB (2000) The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19:6043–6052PubMedCrossRefGoogle Scholar
  17. 17.
    Parri M, Buricchi F, Taddei ML, Giannoni E, Raugei G, Ramponi G, Chiarugi P (2005) EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase. J Biol Chem 280:34008–34018PubMedCrossRefGoogle Scholar
  18. 18.
    Taddei ML, Parri M, Angelucci A, Onnis B, Bianchini F, Giannoni E, Raugei G, Calorini L, Rucci N, Teti A et al (2009) Kinase-dependent and -independent roles of EphA2 in the regulation of prostate cancer invasion and metastasis. Am J Pathol 174:1492–1503PubMedCrossRefGoogle Scholar
  19. 19.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348PubMedCrossRefGoogle Scholar
  20. 20.
    Serrati S, Margheri F, Pucci M, Cantelmo AR, Cammarota R, Dotor J, Borras-Cuesta F, Fibbi G, Albini A, Del RM (2009) TGFbeta1 antagonistic peptides inhibit TGFbeta1-dependent angiogenesis. Biochem Pharmacol 77:813–825PubMedCrossRefGoogle Scholar
  21. 21.
    Angelucci A, Gravina GL, Rucci N, Festuccia C, Muzi P, Vicentini C, Teti A, Bologna M (2004) Evaluation of metastatic potential in prostate carcinoma: an in vivo model. Int J Oncol 25:1713–1720PubMedGoogle Scholar
  22. 22.
    Margheri F, Chilla A, Laurenzana A, Serrati S, Mazzanti B, Saccardi R, Santosuosso M, Danza G, Sturli F, Rosati L et al (2011) Endothelial progenitor cell-dependent angiogenesis requires localization of the full-length form of uPAR in caveolae. Blood 118:3743–3755PubMedCrossRefGoogle Scholar
  23. 23.
    Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2008) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809CrossRefGoogle Scholar
  24. 24.
    Friedl P, Maaser K, Klein CE, Niggemann B, Krohne G, Zanker KS (1997) Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res 57:2061–2070PubMedGoogle Scholar
  25. 25.
    Giannoni E, Bianchini F, Calorini L, Chiarugi P (2011) Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxid Redox Signal 14:2361–2371PubMedCrossRefGoogle Scholar
  26. 26.
    Cat B, Stuhlmann D, Steinbrenner H, Alili L, Holtkotter O, Sies H, Brenneisen P (2006) Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 119:2727–2738PubMedCrossRefGoogle Scholar
  27. 27.
    Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180PubMedCrossRefGoogle Scholar
  28. 28.
    Taddei ML, Parri M, Angelucci A, Bianchini F, Marconi C, Giannoni E, Raugei G, Bologna M, Calorini L, Chiarugi P (2011) EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells. Mol Cancer Res 9:149–160PubMedCrossRefGoogle Scholar
  29. 29.
    Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8:23PubMedCrossRefGoogle Scholar
  30. 30.
    Brabek J, Mierke CT, Rosel D, Vesely P, Fabry B (2010) The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun Signal 8:22PubMedCrossRefGoogle Scholar
  31. 31.
    Dobrzanski P, Hunter K, Jones-Bolin S, Chang H, Robinson C, Pritchard S, Zhao H, Ruggeri B (2004) Antiangiogenic and antitumor efficacy of EphA2 receptor antagonist. Cancer Res 64:910–919PubMedCrossRefGoogle Scholar
  32. 32.
    Cercone MA, Schroeder W, Schomberg S, Carpenter TC (2009) EphA2 receptor mediates increased vascular permeability in lung injury due to viral infection and hypoxia. Am J Physiol Lung Cell Mol Physiol 297:L856–L863PubMedCrossRefGoogle Scholar
  33. 33.
    Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, Jain RK (2010) Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA 107:21677–21682PubMedCrossRefGoogle Scholar
  34. 34.
    Kinch MS, Carles-Kinch K (2003) Overexpression and functional alterations of the EphA2 tyrosine kinase in cancer. Clin Exp Metastasis 20:59–68PubMedCrossRefGoogle Scholar
  35. 35.
    Wykosky J, Debinski W (2008) The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res 6:1795–1806PubMedCrossRefGoogle Scholar
  36. 36.
    Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147PubMedCrossRefGoogle Scholar
  37. 37.
    Toullec A, Gerald D, Despouy G, Bourachot B, Cardon M, Lefort S, Richardson M, Rigaill G, Parrini MC, Lucchesi C et al (2010) Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med 2:211–230PubMedCrossRefGoogle Scholar
  38. 38.
    Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15:416–428PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Elisa Giannoni
    • 1
  • Maria Letizia Taddei
    • 1
  • Matteo Parri
    • 2
  • Francesca Bianchini
    • 3
  • Michela Santosuosso
    • 4
  • Renata Grifantini
    • 2
  • Gabriella Fibbi
    • 3
  • Benedetta Mazzanti
    • 4
  • Lido Calorini
    • 3
    • 5
  • Paola Chiarugi
    • 1
    • 5
    Email author
  1. 1.Department of Biochemical SciencesUniversity of FlorenceFlorenceItaly
  2. 2.Externautics SpASienaItaly
  3. 3.Department of Experimental Pathology and OncologyUniversity of FlorenceFlorenceItaly
  4. 4.Umbilical Cord Bank of AOU CareggiFlorenceItaly
  5. 5.Istituto Toscano Tumori and “Center for Research, Transfer and High Education DenoTHE”FlorenceItaly

Personalised recommendations