Journal of Molecular Medicine

, Volume 90, Issue 12, pp 1421–1438 | Cite as

Specific alterations of the microRNA transcriptome and global network structure in colorectal cancer after treatment with MAPK/ERK inhibitors

  • Marco Ragusa
  • Luisa Statello
  • Marco Maugeri
  • Alessandra Majorana
  • Davide Barbagallo
  • Loredana Salito
  • Mariangela Sammito
  • Manuela Santonocito
  • Rosario Angelica
  • Andrea Cavallaro
  • Marina Scalia
  • Rosario Caltabiano
  • Giuseppe Privitera
  • Antonio Biondi
  • Maria Di Vita
  • Alessandro Cappellani
  • Enrico Vasquez
  • Salvatore Lanzafame
  • Elisabetta Tendi
  • Salvatore Celeste
  • Cinzia Di Pietro
  • Francesco Basile
  • Michele Purrello
Original Article

Abstract

The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has a master control role in various cancer-related biological processes as cell growth, proliferation, differentiation, migration, and apoptosis. It also regulates many transcription factors that control microRNAs (miRNAs) and their biosynthetic machinery. To investigate on the still poorly characterised global involvement of miRNAs within the pathway, we profiled the expression of 745 miRNAs in three colorectal cancer (CRC) cell lines after blocking the pathway with three different inhibitors. This allowed the identification of two classes of post-treatment differentially expressed (DE) miRNAs: (1) common DE miRNAs in all CRC lines after treatment with a specific inhibitor (class A); (2) DE miRNAs in a single CRC line after treatment with all three inhibitors (class B). By determining the molecular targets, biological roles, network position of chosen miRNAs from class A (miR-372, miR-663b, miR-1226*) and class B (miR-92a-1*, miR-135b*, miR-720), we experimentally demonstrated that they are involved in cell proliferation, migration, apoptosis, and globally affect the regulation circuits centred on MAPK/ERK signaling. Interestingly, the levels of miR-92a-1*, miR-135b*, miR-372, miR-720 are significantly higher in biopsies from CRC patients than in normal controls; they also are significantly higher in CRC patients with mutated KRAS than in those with wild-type genotypes (Wilcoxon test, p < 0.05): the latter could be a downstream effect of ERK pathway overactivation, triggered by KRAS mutations. Finally, our functional data strongly suggest the following miRNA/target pairs: miR-92a-1*/PTEN-SOCS5; miR-135b*/LATS2; miR-372/TXNIP; miR-663b/CCND2. Altogether, these results contribute to deepen current knowledge on still uncharacterized features of MAPK/ERK pathway, pinpointing new oncomiRs in CRC and allowing their translation into clinical practice and CRC therapy.

Keywords

Cellular networks Colorectal cancer ERK/MAPK pathway miRNA profile miRNA protein targets 

Notes

Acknowledgments

Prof Michele Purrello and the Researchers of the Unità di BioMedicina Molecolare Genomica e dei Sistemi Complessi, Genetica, Biologia Computazionale are grateful to Prof Karl Grzeschik (Marburg University, Marburg, Germany, UE), Prof Bud Mishra (New York University, New York, NY, USA), Prof Riccardo Vigneri (Università di Catania, Catania, Italy, EU) for their interest toward their studies along the years. We acknowledge the collaboration of Miss R Passanisi and Miss R Pellegrino (students from Corso LT di Scienze Biologiche, Università di Catania) at the time of their thesis preparation. This project was supported by funds from Ministero dell’Università e della Ricerca Scientifica e Tecnologica to Prof M Purrello (FAR 2007: Generation of a technological platform to study the effects of antineoplastic drugs and to investigate their potential efficacy as neuroprotective agents; PRA 2007: Caratterizzazione delle Omiche del Macchinario Apoptotico e dell’Apparato di Trascrizione: ruolo biologico dei microRNA e loro coinvolgimento in Patologia; Progetti Dipartimentali della Facoltà di Medicina e Chirurgia: BioMedicina Molecolare dei Sistemi Complessi: Analisi Molecolare delle Omiche nel Carcinoma del Colon e del Retto ed Applicazioni Cliniche), and PRA to Prof F Basile, A Cappellani, M Di Vita, S Lanzafame.

Supplementary material

109_2012_918_MOESM1_ESM.pdf (1 mb)
ESM 1 PDF 1,034 kb

References

  1. 1.
    Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18PubMedCrossRefGoogle Scholar
  2. 2.
    Junttila MR, Li SP, Westermarck J (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954–965PubMedCrossRefGoogle Scholar
  3. 3.
    Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290PubMedCrossRefGoogle Scholar
  4. 4.
    McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284PubMedCrossRefGoogle Scholar
  5. 5.
    Fang JY, Richardson BC (2005) The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6:322–327PubMedCrossRefGoogle Scholar
  6. 6.
    Friday BB, Adjei AA (2008) Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res 14:342–346PubMedCrossRefGoogle Scholar
  7. 7.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedCrossRefGoogle Scholar
  8. 8.
    García-Foncillas J, Díaz-Rubio E (2010) Progress in metastatic colorectal cancer: growing role of cetuximab to optimize clinical outcome. Clin Transl Oncol 12:533–542PubMedCrossRefGoogle Scholar
  9. 9.
    Schuch G, Kobold S, Bokemeyer C (2009) Evolving role of cetuximab in the treatment of colorectal cancer. Cancer Manag Res 1:79–88PubMedCrossRefGoogle Scholar
  10. 10.
    Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50PubMedCrossRefGoogle Scholar
  11. 11.
    Harris TA, Yamakuchi M, Kondo M, Oettgen P, Lowenstein CJ (2010) Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells. Arterioscler Thromb Vasc Biol 30:1990–1997PubMedCrossRefGoogle Scholar
  12. 12.
    Paroo Z, Ye X, Chen S, Liu Q (2009) Phosphorylation of the human micro-RNA generating complex mediates MAPK/Erk signaling. Cell 139:112–122PubMedCrossRefGoogle Scholar
  13. 13.
    Ragusa M, Majorana A, Statello L, Maugeri M, Salito L, Barbagallo D, Guglielmino MR, Duro LR, Angelica R, Caltabiano R et al (2010) Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther 9:3396–3409PubMedCrossRefGoogle Scholar
  14. 14.
    Chang KH, Mestdagh P, Vandesompele J, Kerin MJ, Miller N (2010) MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer. BMC Cancer 10:173PubMedCrossRefGoogle Scholar
  15. 15.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–research0034.11CrossRefGoogle Scholar
  16. 16.
    Di Pietro C, Ragusa M, Barbagallo D, Duro LR, Guglielmino MR, Majorana A, Angelica R, Scalia M, Statello L, Salito L et al (2009) The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma. BMC Med Genomics 2:20PubMedCrossRefGoogle Scholar
  17. 17.
    Ragusa M, Majorana A, Banelli B, Barbagallo D, Statello L, Casciano I, Guglielmino MR, Duro LR, Scalia M, Magro G et al (2010) MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis. J Mol Med 88:1041–1053PubMedCrossRefGoogle Scholar
  18. 18.
    Yeh JJ, Routh ED, Rubinas T, Peacock J, Martin TD, Shen XJ, Sandler RS, Kim HJ, Keku TO, Der CJ (2009) KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther 8:834–843PubMedCrossRefGoogle Scholar
  19. 19.
    Mhaidat NM, Alali FQ, Matalqah SM, Matalka II, Jaradat SA, Al-Sawalha NA, Thorne RF (2009) Inhibition of MEK sensitizes paclitaxel-induced apoptosis of human colorectal cancer cells by downregulation of GRP78. Anticancer Drugs 20:601–606PubMedCrossRefGoogle Scholar
  20. 20.
    Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink WJ, Carvalho B, Meijer GA (2009) MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer 101:707–714PubMedCrossRefGoogle Scholar
  21. 21.
    Arvey A, Larsson E, Sander C, Leslie CS, Marks DS (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:363PubMedCrossRefGoogle Scholar
  22. 22.
    Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, Kjems J (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30:4414–4422PubMedCrossRefGoogle Scholar
  23. 23.
    Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat Biotechnol 27:549–555PubMedCrossRefGoogle Scholar
  24. 24.
    Larsson E, Sander C, Marks D (2010) mRNA turnover rate limits siRNA and microRNA efficacy. Mol Syst Biol 6:433PubMedGoogle Scholar
  25. 25.
    Clancy JL, Wei GH, Echner N, Humphreys DT, Beilharz TH, Preiss T (2011) mRNA isoform diversity can obscure detection of miRNA-mediated control of translation. RNA 17:1025–1031PubMedCrossRefGoogle Scholar
  26. 26.
    Chen CY, Chen ST, Fuh CS, Juan HF, Huang HC (2011) Coregulation of transcription factors and microRNAs in human transcriptional regulatory network. BMC Bioinformatics 12(Suppl 1):S41PubMedCrossRefGoogle Scholar
  27. 27.
    Ritchie W, Rajasekhar M, Flamant S, Rasko JE (2009) Conserved expression patterns predict microRNA targets. PLoS Comput Biol 5(9):e1000513PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou Y, Ferguson J, Chang JT, Kluger Y (2007) Inter- and intra-combinatorial regulation by transcription factors and microRNAs. BMC Genomics 8:396PubMedCrossRefGoogle Scholar
  29. 29.
    Alenzi FQ (2004) Links between apoptosis, proliferation and the cell cycle. Br J Biomed Sci 61(2):99–102PubMedGoogle Scholar
  30. 30.
    Guo M, Hay BA (1999) Cell proliferation and apoptosis. Curr Opin Cell Biol 11(6):745–752PubMedCrossRefGoogle Scholar
  31. 31.
    Marhaba R, Zöller M (2004) CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 35:211–231PubMedCrossRefGoogle Scholar
  32. 32.
    Wong K, Rubenthiran U, Jothy S (2003) Motility of colon cancer cells: modulation by CD44 isoform expression. Exp Mol Pathol 75:124–130PubMedCrossRefGoogle Scholar
  33. 33.
    Han JD (2008) Understanding biological functions through molecular networks. Cell Res 18:224–237PubMedCrossRefGoogle Scholar
  34. 34.
    Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249PubMedCrossRefGoogle Scholar
  35. 35.
    Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504PubMedCrossRefGoogle Scholar
  36. 36.
    Mattia G, Errico MC, Felicetti F, Petrini M, Bottero L, Tomasello L, Romania P, Boe A, Segnalini P, Di Virgilio A et al (2011) Constitutive activation of the ETS-1-miR-222 circuitry in metastatic melanoma. Pigment Cell Melanoma Res 24:953–965PubMedCrossRefGoogle Scholar
  37. 37.
    Foulds CE, Nelson ML, Blaszczak AG, Graves BJ (2004) Ras/mitogen-activated protein kinase signaling activates Ets-1 and Ets-2 by CBP/p300 recruitment. Mol Cell Biol 24:10954–10964PubMedCrossRefGoogle Scholar
  38. 38.
    Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A (2009) Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 101:1308–1324PubMedCrossRefGoogle Scholar
  39. 39.
    Kario E, Marmor MD, Adamsky K, Citri A, Amit I, Amariglio N, Rechavi G, Yarden Y (2005) Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chem 280:7038–7048PubMedCrossRefGoogle Scholar
  40. 40.
    Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68:5795–5802PubMedCrossRefGoogle Scholar
  41. 41.
    Li Y, Pei J, Xia H, Ke H, Wang H, Tao W (2003) Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene 22:4398–4405PubMedCrossRefGoogle Scholar
  42. 42.
    Bandrés E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzó M et al (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29PubMedCrossRefGoogle Scholar
  43. 43.
    Sheth SS, Bodnar JS, Ghazalpour A, Thipphavong CK, Tsutsumi S, Tward AD, Demant P, Kodama T, Aburatani H, Lusis AJ (2006) Hepatocellular carcinoma in Txnip-deficient mice. Oncogene 25(25):3528–3536PubMedCrossRefGoogle Scholar
  44. 44.
    de Zhuo X, Niu XH, Chen YC, Xin DQ, Guo YL, Mao ZB (2010) Vitamin D3 up-regulated protein 1(VDUP1) is regulated by FOXO3A and miR-17-5p at the transcriptional and post-transcriptional levels, respectively, in senescent fibroblasts. J Biol Chem 285:31491–31501CrossRefGoogle Scholar
  45. 45.
    Yan GR, Xu SH, Tan ZL, Liu L, He QY (2011) Global identification of miR-373-regulated genes in breast cancer by quantitative proteomics. Proteomics 11:912–920PubMedCrossRefGoogle Scholar
  46. 46.
    Ng MK, Wu J, Chang E, Wang BY, Katzenberg-Clark R, Ishii-Watabe A, Cooke JP (2007) A central role for nicotinic cholinergic regulation of growth factor-induced endothelial cell migration. Arterioscler Thromb Vasc Biol 27:106–112PubMedCrossRefGoogle Scholar
  47. 47.
    Sarkar R, Hunter IA, Rajaganeshan R, Perry SL, Guillou P, Jayne DG (2010) Expression of cyclin D2 is an independent predictor of the development of hepatic metastasis in colorectal cancer. Colorectal Dis 12:316–323PubMedCrossRefGoogle Scholar
  48. 48.
    Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840PubMedCrossRefGoogle Scholar
  49. 49.
    Lai EC (2005) miRNAs: whys and wherefores of miRNA-mediated regulation. Curr Biol 15(12):R458–R460PubMedCrossRefGoogle Scholar
  50. 50.
    Linsen SE, Tops BB, Cuppen E (2008) miRNAs: small changes, widespread effects. Cell Res 18(12):1157–1159PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marco Ragusa
    • 1
  • Luisa Statello
    • 1
  • Marco Maugeri
    • 1
  • Alessandra Majorana
    • 1
  • Davide Barbagallo
    • 1
  • Loredana Salito
    • 1
  • Mariangela Sammito
    • 1
  • Manuela Santonocito
    • 1
  • Rosario Angelica
    • 1
  • Andrea Cavallaro
    • 2
  • Marina Scalia
    • 1
  • Rosario Caltabiano
    • 3
  • Giuseppe Privitera
    • 4
  • Antonio Biondi
    • 2
  • Maria Di Vita
    • 2
  • Alessandro Cappellani
    • 2
  • Enrico Vasquez
    • 3
  • Salvatore Lanzafame
    • 3
  • Elisabetta Tendi
    • 5
  • Salvatore Celeste
    • 5
  • Cinzia Di Pietro
    • 1
  • Francesco Basile
    • 2
  • Michele Purrello
    • 1
  1. 1.Dipartimento Gian Filippo Ingrassia, Unità di BioMedicina Molecolare Genomica e dei Sistemi Complessi, Genetica, Biologia ComputazionaleUniversità di CataniaCataniaItaly
  2. 2.Dipartimento di ChirurgiaUniversità di CataniaCataniaItaly
  3. 3.Dipartimento Gian Filippo Ingrassia, Unità di Anatomia PatologicaUniversità di CataniaCataniaItaly
  4. 4.Dipartimento di Ostetricia, Ginecologia e Scienze RadiologicheUniversità di CataniaCataniaItaly
  5. 5.European Drug Safety and Metabolism Research CenterCataniaItaly

Personalised recommendations