Journal of Molecular Medicine

, Volume 90, Issue 5, pp 543–561 | Cite as

Evolutionary dynamics of HIV at multiple spatial and temporal scales

  • Alison L. Hill
  • Daniel I. S. Rosenbloom
  • Martin A. Nowak


Infectious diseases remain a formidable challenge to human health, and understanding pathogen evolution is crucial to designing effective therapeutics and control strategies. Here, we review important evolutionary aspects of HIV infection, highlighting the concept of selection at multiple spatial and temporal scales. At the smallest scale, a single cell may be infected by multiple virions competing for intracellular resources. Recombination and phenotypic mixing introduce novel evolutionary dynamics. As the virus spreads between cells in an infected individual, it continually evolves to circumvent the immune system. We discuss evolutionary mechanisms of HIV pathogenesis and progression to AIDS. Viral spread throughout the human population can lead to changes in virulence and the transmission of immune-evading variation. HIV emerged as a human pathogen due to selection occurring between different species, adapting from related viruses of primates. HIV also evolves resistance to antiretroviral drugs within a single infected host, and we explore the possibility for the spread of these strains between hosts, leading to a drug-resistant epidemic. We investigate the role of latency, drug-protected compartments, and direct cell-to-cell transmission on viral evolution. The introduction of an HIV vaccine may select for viral variants that escape vaccine control, both within an individual and throughout the population. Due to the strong selective pressure exerted by HIV-induced morbidity and mortality in many parts of the world, the human population itself may be co-evolving in response to the HIV pandemic. Throughout the paper, we focus on trade-offs between costs and benefits that constrain viral evolution and accentuate how selection pressures differ at different levels of selection.


HIV Evolutionary dynamics Drug resistance Immune escape Virulence Coevolution 



We are grateful for the support from the National Science Foundation/National Institutes of Health joint program in mathematical biology (M.A.N., A.L.H.), the Bill & Melinda Gates Foundation (M.A.N., A.L.H.), a National Science Foundation Graduate Research Fellowship (D.I.S.R.), the John Templeton Foundation (M.A.N.), and J. Epstein (M.A.N.). We thank Pleuni Pennings, Alal Eran, Alireza Rabi, and two anonymous reviewers for helpful comments with the manuscript.

Supplementary material

109_2012_892_MOESM1_ESM.doc (145 kb)
Appendix (DOC 145 kb)


  1. 1.
    Fauci AS (2001) Infectious diseases: considerations for the 21st century. Clin Infect Dis 32:675–685. doi: 10.1086/319235 PubMedCrossRefGoogle Scholar
  2. 2.
    Pier GB (2008) On the greatly exaggerated reports of the death of infectious diseases. Clin Infect Dis 47:1113–1114. doi: 10.1086/592123 PubMedCrossRefGoogle Scholar
  3. 3.
    Spellberg B (2008) Dr. William H. Stewart: mistaken or maligned? Clin Infect Dis 47:294. doi: 10.1086/589579 PubMedCrossRefGoogle Scholar
  4. 4.
    Joint United Nations Programme on HIV/AIDS and World Health Organization (2009) AIDS epidemic update. Available: Accessed 2 Jan 2012
  5. 5.
    CDC (2011) HIV surveillance—United States, 1981–2008. MMWR 60:689–693Google Scholar
  6. 6.
    Stearns SC, Koella JC (2008) Evolution in health and disease, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  7. 7.
    Trevathan WR, Smith EO, McKenna J (2007) Evolutionary medicine and health: new perspectives, 1st edn. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69:5087–5094PubMedGoogle Scholar
  9. 9.
    Bull JJ, Sanjuán R, Wilke CO (2007) Theory of lethal mutagenesis for viruses. J Virol 81:2930–2939. doi: 10.1128/JVI.01624-06 PubMedCrossRefGoogle Scholar
  10. 10.
    Eigen M (2002) Error catastrophe and antiviral strategy. Proc Natl Acad Sci USA 99:13374–13376. doi: 10.1073/pnas.212514799 PubMedCrossRefGoogle Scholar
  11. 11.
    Holmes EC (2009) Evolution and emergence of RNA viruses. Oxford University Press, New YorkGoogle Scholar
  12. 12.
    Nowk MA (1992) What is a quasispecies? Trends Ecol Evol 7:118–121. doi: 10.1016/0169-5347(92)90145-2 CrossRefGoogle Scholar
  13. 13.
    Kamp C, Wilke CO, Adami C, Bornholdt S (2002) Viral evolution under the pressure of an adaptive immune system: optimal mutation rates for viral escape. Complexity 8:28–33. doi: 10.1002/cplx.10067 CrossRefGoogle Scholar
  14. 14.
    M’Gonigle LK, Shen JJ, Otto SP (2009) Mutating away from your enemies: the evolution of mutation rate in a host–parasite system. Theor Popul Biol 75:301–311. doi: 10.1016/j.tpb.2009.03.003 PubMedCrossRefGoogle Scholar
  15. 15.
    Abram ME, Ferris AL, Shao W, Alvord WG, Hughes SH (2010) Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J Virol 84:9864–9878. doi: 10.1128/JVI.00915-10 PubMedCrossRefGoogle Scholar
  16. 16.
    Rosenbloom DIS, Hill AL, Rabi SA, Siliciano RF, Nowak MA (2012) Antiretroviral dynamics determines HIV evolution and predicts therapy outcome (in press)Google Scholar
  17. 17.
    Ariën KK, Vanham G, Arts EJ (2007) Is HIV-1 evolving to a less virulent form in humans? Nat Rev Micro 5:141–151CrossRefGoogle Scholar
  18. 18.
    Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK et al (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809PubMedCrossRefGoogle Scholar
  19. 19.
    Lecossier D, Bouchonnet F, Clavel F, Hance AJ (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300:1112. doi: 10.1126/science.1083338 PubMedCrossRefGoogle Scholar
  20. 20.
    Chiu Y-L, Greene WC (2008) The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu Rev Immunol 26:317–353. doi: 10.1146/annurev.immunol.26.021607.090350 PubMedCrossRefGoogle Scholar
  21. 21.
    Levy DN, Aldrovandi GM, Kutsch O, Shaw GM (2004) Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci USA 101:4204–4209PubMedCrossRefGoogle Scholar
  22. 22.
    Thomson MM, Nájera R (2005) Molecular epidemiology of HIV-1 variants in the global AIDS pandemic: an update. AIDS Rev 7:210–224PubMedGoogle Scholar
  23. 23.
    Keele BF, Van Heuverswyn F, Li Y, Bailes E, Takehisa J et al (2006) Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313:523–526. doi: 10.1126/science.1126531 PubMedCrossRefGoogle Scholar
  24. 24.
    Santiago ML, Range F, Keele BF, Li Y, Bailes E et al (2005) Simian Immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Taï Forest, Côte d’Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. J Virol 79:12515–12527. doi: 10.1128/JVI.79.19.12515-12527.2005 PubMedCrossRefGoogle Scholar
  25. 25.
    Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K et al (2008) Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455:661–664. doi: 10.1038/nature07390 PubMedCrossRefGoogle Scholar
  26. 26.
    Wolfe ND, Switzer WM, Carr JK, Bhullar VB, Shanmugam V et al (2004) Naturally acquired simian retrovirus infections in central African hunters. Lancet 363:932–937. doi: 10.1016/S0140-6736(04)15787-5 PubMedCrossRefGoogle Scholar
  27. 27.
    May RM, Anderson RM (1987) Transmission dynamics of HIV infection. Nature 326:137–142. doi: 10.1038/326137a0 PubMedCrossRefGoogle Scholar
  28. 28.
    Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, New YorkGoogle Scholar
  29. 29.
    de Sousa JD, Müller V, Lemey P, Vandamme A-M (2010) High GUD incidence in the early 20th century created a particularly permissive time window for the origin and initial spread of epidemic HIV strains. PLoS One 5:e9936. doi: 10.1371/journal.pone.0009936 PubMedCrossRefGoogle Scholar
  30. 30.
    Katzourakis A, Tristem M, Pybus OG, Gifford RJ (2007) Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci USA 104:6261–6265. doi: 10.1073/pnas.0700471104 PubMedCrossRefGoogle Scholar
  31. 31.
    Silvestri G, Sodora DL, Koup RA, Paiardini M, O’Neil SP et al (2003) Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 18:441–452PubMedCrossRefGoogle Scholar
  32. 32.
    Estes JD, Gordon SN, Zeng M, Chahroudi AM, Dunham RM et al (2008) Early resolution of acute immune activation and induction of PD-1 in SIV-infected sooty mangabeys distinguishes nonpathogenic from pathogenic infection in rhesus macaques. J Immunol 180:6798–6807PubMedGoogle Scholar
  33. 33.
    Goulder PJR, Watkins DI (2008) Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat Rev Immunol 8:619–630. doi: 10.1038/nri2357 PubMedCrossRefGoogle Scholar
  34. 34.
    Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA et al (1999) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283:857–860. doi: 10.1126/science.283.5403.857 PubMedCrossRefGoogle Scholar
  35. 35.
    Wertheim JO, Worobey M (2009) Dating the age of the SIV lineages that gave rise to HIV-1 and HIV-2. PLoS Comput Biol 5:e1000377. doi: 10.1371/journal.pcbi.1000377 PubMedCrossRefGoogle Scholar
  36. 36.
    Holmes EC (2008) Evolutionary history and phylogeography of human viruses. Annu Rev Microbiol 62:307–328. doi: 10.1146/annurev.micro.62.081307.162912 PubMedCrossRefGoogle Scholar
  37. 37.
    Worobey M, Telfer P, Souquière S, Hunter M, Coleman CA et al (2010) Island biogeography reveals the deep history of SIV. Science 329:1487. doi: 10.1126/science.1193550 PubMedCrossRefGoogle Scholar
  38. 38.
    Wertheim JO, Kosakovsky Pond SL (2011) Purifying selection can obscure the ancient age of viral lineages. Mol Biol Evol 28:3355–3365. doi: 10.1093/molbev/msr170 PubMedCrossRefGoogle Scholar
  39. 39.
    Abecasis AB, Lemey P, Vidal N, de Oliveira T, Peeters M et al (2007) Recombination confounds the early evolutionary history of human immunodeficiency virus type 1: subtype G is a circulating recombinant form. J Virol 81:8543–8551. doi: 10.1128/JVI.00463-07 PubMedCrossRefGoogle Scholar
  40. 40.
    Cvitkovitch DG, Li Y-H, Ellen RP (2003) Quorum sensing and biofilm formation in Streptococcal infections. J Clin Invest 112:1626–1632. doi: 10.1172/JCI20430 PubMedGoogle Scholar
  41. 41.
    Edwards SV (2009) Is a new and general theory of molecular systematics emerging? Evolution 63:1–19PubMedCrossRefGoogle Scholar
  42. 42.
    Chung Y, Ané C (2011) Comparing two Bayesian methods for gene tree/species tree reconstruction: simulations with incomplete lineage sorting and horizontal gene transfer. Syst Biol 60:261PubMedCrossRefGoogle Scholar
  43. 43.
    Valen V (1973) A new evolutionary law. Evol Theory 1:1–30. doi: 10.1038/344864a0 Google Scholar
  44. 44.
    May RM, Anderson RM (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc B 219:281–313CrossRefGoogle Scholar
  45. 45.
    May RM, Nowak MA (1995) Coinfection and the evolution of parasite virulence. Proc R Soc B 261:209–215. doi: 10.1098/rspb.1995.0138 PubMedCrossRefGoogle Scholar
  46. 46.
    Nowak MA, May RM (1994) Superinfection and the evolution of parasite virulence. Proc R Soc B 255(1342):81–89PubMedCrossRefGoogle Scholar
  47. 47.
    Müller V, Fraser C, Herbeck JT (2011) A strong case for viral genetic factors in HIV virulence. Viruses 3:204–216. doi: 10.3390/v3030204 PubMedCrossRefGoogle Scholar
  48. 48.
    Shirreff G, Pellis L, Laeyendecker O, Fraser C (2011) Transmission selects for HIV-1 strains of intermediate virulence: a modelling approach. PLoS Comput Biol 7:e1002185. doi: 10.1371/journal.pcbi.1002185 PubMedCrossRefGoogle Scholar
  49. 49.
    Herbeck JT, Müller V, Maust BS, Ledergerber B, Torti C et al (2012) Is the virulence of HIV changing? A meta-analysis of trends in prognostic markers of HIV disease progression and transmission. AIDS 26:193–205. doi: 10.1097/QAD.0b013e32834db418 PubMedCrossRefGoogle Scholar
  50. 50.
    Dixit NM, Perelson AS (2005) HIV dynamics with multiple infections of target cells. Proc Natl Acad Sci USA 102:8198–8203. doi: 10.1073/pnas.0407498102 PubMedCrossRefGoogle Scholar
  51. 51.
    Wodarz D, Levy DN (2011) Effect of multiple infection of cells on the evolutionary dynamics of HIV in vivo: implications for host adaptation mechanisms. Exp Biol Med 236:926–937. doi: 10.1258/ebm.2011.011062 CrossRefGoogle Scholar
  52. 52.
    Wilke CO, Novella IS (2003) Phenotypic mixing and hiding may contribute to memory in viral quasispecies. BMC Microbiol 3:11. doi: 10.1186/1471-2180-3-11 PubMedCrossRefGoogle Scholar
  53. 53.
    Novick A, Szilard L (1951) Virus strains of identical phenotype but different genotype. Science 113:34–35PubMedCrossRefGoogle Scholar
  54. 54.
    Boerlijst MC, Bonhoeffer S, Nowak MA (1996) Viral quasi-species and recombination. Proc R Soc B 263:1577–1584CrossRefGoogle Scholar
  55. 55.
    Mostowy R, Kouyos RD, Fouchet D, Bonhoeffer S (2011) The role of recombination for the coevolutionary dynamics of HIV and the immune response. PLoS One 6:e16052. doi: 10.1371/journal.pone.0016052 PubMedCrossRefGoogle Scholar
  56. 56.
    Bretscher MT, Althaus CL, Müller V, Bonhoeffer S (2004) Recombination in HIV and the evolution of drug resistance: for better or for worse? Bioessays 26:180–188. doi: 10.1002/bies.10386 PubMedCrossRefGoogle Scholar
  57. 57.
    Jung A, Maier R, Vartanian J-P, Bocharov G, Jung V et al (2002) Recombination: multiply infected spleen cells in HIV patients. Nature 418:144. doi: 10.1038/418144a PubMedCrossRefGoogle Scholar
  58. 58.
    Josefsson L, King MS, Makitalo B, Brännström J, Shao W et al (2011) Majority of CD4+ T cells from peripheral blood of HIV-1–infected individuals contain only one HIV DNA molecule. Proc Natl Acad Sci 108:11199–11204. doi: 10.1073/pnas.1107729108 PubMedCrossRefGoogle Scholar
  59. 59.
    Batorsky R, Kearney MF, Palmer SE, Maldarelli F, Rouzine IM et al (2011) Estimate of effective recombination rate and average selection coefficient for HIV in chronic infection. Proc Natl Acad Sci USA. Available:
  60. 60.
    Neher RA, Leitner T (2010) Recombination rate and selection strength in HIV intra-patient evolution. PLoS Comput Biol 6:e1000660. doi: 10.1371/journal.pcbi.1000660 PubMedCrossRefGoogle Scholar
  61. 61.
    Nowak MA, Anderson RM, McLean AR, Wolfs TF, Goudsmit J et al (1991) Antigenic diversity thresholds and the development of AIDS. Science 254:963–969PubMedCrossRefGoogle Scholar
  62. 62.
    Schenzle D (1994) A model for AIDS pathogenesis. Stat Med 13:2067–2079. doi: 10.1002/sim.4780131916 PubMedCrossRefGoogle Scholar
  63. 63.
    Nowak MA, May RM, Phillips RE, Rowland-Jones S, Lalloo DG et al (1995) Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375:606–611PubMedCrossRefGoogle Scholar
  64. 64.
    Nowak MA, May RM (2000) Virus dynamics: mathematical principles of immunology and virology. Oxford University Press, New YorkGoogle Scholar
  65. 65.
    Phillips AN (1996) Reduction of HIV concentration during acute infection: independence from a specific immune response. Science 271:497PubMedCrossRefGoogle Scholar
  66. 66.
    Simon V, Ho DD, Abdool Karim Q (2006) HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 368:489–504. doi: 10.1016/S0140-6736(06)69157-5 PubMedCrossRefGoogle Scholar
  67. 67.
    Walker C, Moody D, Stites D, Levy J (1986) CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234:1563–1566. doi: 10.1126/science.2431484 PubMedCrossRefGoogle Scholar
  68. 68.
    Lifson JD, Rossio JL, Piatak M, Parks T, Li L et al (2001) Role of CD8+ lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment. J Virol 75:10187–10199PubMedCrossRefGoogle Scholar
  69. 69.
    Wodarz D, Page KM, Arnaout RA, Thomsen AR, Lifson JD et al (2000) A new theory of cytotoxic T-lymphocyte memory: implications for HIV treatment. Phil Trans R Soc B 355:329–343PubMedCrossRefGoogle Scholar
  70. 70.
    Wei X, Decker JM, Wang S, Hui H, Kappes JC et al (2003) Antibody neutralization and escape by HIV-1. Nature 422:307–312PubMedCrossRefGoogle Scholar
  71. 71.
    Chang JJ, Altfeld M (2010) Innate immune activation in primary HIV-1 infection. J Infect Dis 202:S297–S301. doi: 10.1086/655657 PubMedCrossRefGoogle Scholar
  72. 72.
    Boutwell CL, Rolland MM, Herbeck JT, Mullins JI, Allen TM (2010) Viral evolution and escape during acute HIV-1 infection. J Infect Dis 202:S309–S314. doi: 10.1086/655653 PubMedCrossRefGoogle Scholar
  73. 73.
    Kouyos RD, von Wyl V, Hinkley T, Petropoulos CJ, Haddad M et al (2011) Assessing predicted HIV-1 replicative capacity in a clinical setting. PLoS Pathog 7:e1002321. doi: 10.1371/journal.ppat.1002321 PubMedCrossRefGoogle Scholar
  74. 74.
    Goulder PJR, Watkins DI (2004) HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol 4:630–640. doi: 10.1038/nri1417 PubMedCrossRefGoogle Scholar
  75. 75.
    Phillips RE, Rowland-Jones S, Nixon DF, Gotch FM, Edwards JP et al (1991) Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354:453–459. doi: 10.1038/354453a0 PubMedCrossRefGoogle Scholar
  76. 76.
    Althaus CL, De Boer RJ (2008) Dynamics of immune escape during HIV/SIV infection. PLoS Comput Biol 4:e1000103. doi: 10.1371%2Fjournal.pcbi.1000103 PubMedCrossRefGoogle Scholar
  77. 77.
    Allen TM, Altfeld M, Geer SC, Kalife ET, Moore C et al (2005) Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol 79:13239–13249. doi: 10.1128/JVI.79.21.13239-13249.2005 PubMedCrossRefGoogle Scholar
  78. 78.
    Carlson JM, Brumme ZL, Rousseau CM, Brumme CJ, Matthews P et al (2008) Phylogenetic dependency networks: inferring patterns of CTL escape and codon covariation in HIV-1 Gag. PLoS Comput Biol 4:e1000225. doi: 10.1371%2Fjournal.pcbi.1000225 PubMedCrossRefGoogle Scholar
  79. 79.
    Brumme ZL, John M, Carlson JM, Brumme CJ, Chan D et al (2009) HLA-associated immune escape pathways in HIV-1 subtype B Gag, Pol and Nef proteins. PLoS One 4:e6687. doi: 10.1371/journal.pone.0006687 PubMedCrossRefGoogle Scholar
  80. 80.
    Regoes RR, Bonhoeffer S (2005) The HIV coreceptor switch: a population dynamical perspective. Trends Microbiol 13:269–277. doi: 10.1016/j.tim.2005.04.005 PubMedCrossRefGoogle Scholar
  81. 81.
    Levy JA (2009) HIV pathogenesis: 25 years of progress and persistent challenges. AIDS 23:147–160. doi: 10.1097/QAD.0b013e3283217f9f PubMedCrossRefGoogle Scholar
  82. 82.
    Sheppard HW, Celum C, Michael NL, O’Brien S, Dean M et al (2002) HIV-1 infection in individuals with the CCR5-[Delta] 32/[Delta] 32 genotype: acquisition of syncytium-inducing virus at seroconversion. J Acquir Immune Defic Syndr 29:307PubMedGoogle Scholar
  83. 83.
    Lehmann C, Däumer M, Boussaad I, Sing T, Beerenwinkel N et al (2006) Stable coreceptor usage of HIV in patients with ongoing treatment failure on HAART. J Clin Virol 37:300–304. doi: 10.1016/j.jcv.2006.08.008 PubMedCrossRefGoogle Scholar
  84. 84.
    Regoes RR, Wodarz D, Nowak MA (1998) Virus dynamics: the effect of target cell limitation and immune responses on virus evolution. J Theor Biol 191:451–462PubMedCrossRefGoogle Scholar
  85. 85.
    Kamp C, Bornholdt S (2002) From HIV infection to AIDS: a dynamically induced percolation transition? Proc R Soc B 269:2035–2040. doi: 10.1098/rspb.2002.2095 PubMedCrossRefGoogle Scholar
  86. 86.
    Asquith B (2008) The evolutionary selective advantage of HIV-1 escape variants and the contribution of escape to the HLA-associated risk of AIDS progression. PLoS One 3:e3486. doi: 10.1371/journal.pone.0003486 PubMedCrossRefGoogle Scholar
  87. 87.
    Cummins NW, Badley AD (2010) Mechanisms of HIV-associated lymphocyte apoptosis: 2010. Cell Death and Dis 1:e99CrossRefGoogle Scholar
  88. 88.
    Alimonti JB, Ball TB, Fowke KR (2003) Mechanisms of CD4+ T lymphocyte cell death in human immunodeficiency virus infection and AIDS. J Gen Virol 84:1649–1661. doi: 10.1099/vir.0.19110-0 PubMedCrossRefGoogle Scholar
  89. 89.
    Yates A, Stark J, Klein N, Antia R, Callard R (2007) Understanding the slow depletion of memory CD4+ T cells in HIV infection. PLoS Med 4:e177. doi: 10.1371/journal.pmed.0040177 PubMedCrossRefGoogle Scholar
  90. 90.
    Galvani AP (2005) The role of mutation accumulation in HIV progression. Proc R Soc B 272:1851–1858. doi: 10.1098/rspb.2005.3083 Google Scholar
  91. 91.
    Bartha I, Simon P, Müller V (2008) Has HIV evolved to induce immune pathogenesis? Trends Immunol 29:322–328. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  92. 92.
    Deeks SG, Walker BD (2007) Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27:406–416PubMedCrossRefGoogle Scholar
  93. 93.
    Koup RA, Graham BS, Douek DC (2011) The quest for a T cell-based immune correlate of protection against HIV: a story of trials and errors. Nat Rev Immunol 11:65–70. doi: 10.1038/nri2890 PubMedCrossRefGoogle Scholar
  94. 94.
    O’Connell KA, Brennan TP, Bailey JR, Ray SC, Siliciano RF et al (2010) Control of HIV-1 in elite suppressors despite ongoing replication and evolution in plasma virus. J Virol 84(14):7018–7028. doi: 10.1128/JVI.00548-10 PubMedCrossRefGoogle Scholar
  95. 95.
    Wright JK, Brumme ZL, Carlson JM, Heckerman D, Kadie CM et al (2010) Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: associations with HLA type and clinical parameters. J Virol 84:10820–10831. doi: 10.1128/JVI.01084-10 PubMedCrossRefGoogle Scholar
  96. 96.
    Miura T, Brockman MA, Brumme ZL, Brumme CJ, Pereyra F et al (2008) HLA associated alterations in replication capacity of chimeric NL4-3 viruses encoding gag-protease from HIV-1 elite controllers. J Virol 83:140–149. doi: 10.1128/JVI.01471-08 PubMedCrossRefGoogle Scholar
  97. 97.
    Miura T, Brumme CJ, Brockman MA, Brumme ZL, Pereyra F et al (2009) HLA associated viral mutations are common in human immunodeficiency virus type 1 elite controllers. J Virol 83:3407–3412PubMedCrossRefGoogle Scholar
  98. 98.
    Nowak MA, May RM (1991) Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math Biosci 106:1–21PubMedCrossRefGoogle Scholar
  99. 99.
    Pantaleo G, Koup RA (2004) Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med 10:806–810PubMedCrossRefGoogle Scholar
  100. 100.
    Korber B, Gnanakaran S (2011) Converging on an HIV vaccine. Science 333:1589–1590. doi: 10.1126/science.1211919 PubMedCrossRefGoogle Scholar
  101. 101.
    Blankson JN (2011) The study of elite controllers: a pure academic exercise or a potential pathway to an HIV-1 vaccine? Curr Opin HIV AIDS 6:147–150. doi: 10.1097/COH.0b013e3283457868 PubMedCrossRefGoogle Scholar
  102. 102.
    Johnson WE, Desrosiers RC (2002) Viral persistence: HIV’s strategies of immune system evasion. Annu Rev Med 53:499–518. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  103. 103.
    Stearns SC (1977) The evolution of life history traits: a critique of the theory and a review of the data. Annu Rev Ecol Syst 8:145–171CrossRefGoogle Scholar
  104. 104.
    Stearns SC (1976) Life-history tactics: a review of the ideas. Q Rev Biol 51(1):3–47PubMedCrossRefGoogle Scholar
  105. 105.
    Leslie AJ, Pfafferott KJ, Chetty P, Draenert R, Addo MM et al (2004) HIV evolution: CTL escape mutation and reversion after transmission. Nat Med 10:282–289PubMedCrossRefGoogle Scholar
  106. 106.
    Kawashima Y, Pfafferott K, Frater J, Matthews P, Payne R et al (2009) Adaptation of HIV-1 to human leukocyte antigen class I. Nature 458:641–645. doi: 10.1038/nature07746 PubMedCrossRefGoogle Scholar
  107. 107.
    Fryer HR, Scherer A, Oxenius A, Phillips R, McLean AR (2009) No evidence for competition between cytotoxic T-lymphocyte responses in HIV-1 infection. Proc R Soc B. doi: 10.1098/rspb.2009.1232
  108. 108.
    Heeney JL, Dalgleish AG, Weiss RA (2006) Origins of HIV and the evolution of resistance to AIDS. Science 313:462–466. doi: 10.1126/science.1123016 PubMedCrossRefGoogle Scholar
  109. 109.
    Moir S, Chun T-W, Fauci AS (2011) Pathogenic mechanisms of HIV disease. Annu Rev Pathol 6:223–248. doi: 10.1146/annurev-pathol-011110-130254 PubMedCrossRefGoogle Scholar
  110. 110.
    Fellay J, Shianna KV, Telenti A, Goldstein DB (2010) Host genetics and HIV-1: the final phase? PLoS Pathog 6:e1001033. doi: 10.1371/journal.ppat.1001033 PubMedCrossRefGoogle Scholar
  111. 111.
    Barouch DH (2008) Challenges in the development of an HIV-1 vaccine. Nature 455:613–619PubMedCrossRefGoogle Scholar
  112. 112.
    Gandon S, Mackinnon MJ, Nee S, Read AF (2001) Imperfect vaccines and the evolution of pathogen virulence. Nature 414:751–756. doi: 10.1038/414751a PubMedCrossRefGoogle Scholar
  113. 113.
    van der Kuyl AC, Cornelissen M (2007) Identifying HIV-1 dual infections. Retrovirology 4:67. doi: 10.1186/1742-4690-4-67 PubMedCrossRefGoogle Scholar
  114. 114.
    Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338:853–860. doi: 10.1056/NEJM199803263381301 PubMedCrossRefGoogle Scholar
  115. 115.
    Bonhoeffer S, Nowak MA (1997) Pre-existence and emergence of drug resistance in HIV-1 infection. Proc R Soc B 264:631–637PubMedCrossRefGoogle Scholar
  116. 116.
    Ribeiro RM, Bonhoeffer S, Nowak MA (1998) The frequency of resistant mutant virus before antiviral therapy. AIDS 12:461PubMedCrossRefGoogle Scholar
  117. 117.
    Shen L, Peterson S, Sedaghat AR, McMahon MA, Callender M et al (2008) Dose–response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 14:762–766PubMedCrossRefGoogle Scholar
  118. 118.
    Sampah MES, Shen L, Jilek BL, Siliciano RF (2011) Dose–response curve slope is a missing dimension in the analysis of HIV-1 drug resistance. Proc Natl Acad Sci USA 108:7613–7618. doi: 10.1073/pnas.1018360108 PubMedCrossRefGoogle Scholar
  119. 119.
    Hartl DL, Clark AG (2007) Principles of population genetics. Sinauer Associates, SunderlandGoogle Scholar
  120. 120.
    Pennings PS (2011) Standing genetic variation and the evolution of drug resistance in HIV. Arxiv preprint arXiv:11116164Google Scholar
  121. 121.
    Kouyos RD, Althaus CL, Bonhoeffer S (2006) Stochastic or deterministic: what is the effective population size of HIV-1? Trends Microbiol 14:507–511. doi: 16/j.tim.2006.10.001 PubMedCrossRefGoogle Scholar
  122. 122.
    Dinoso JB, Kim SY, Wiegand AM, Palmer SE, Gange SJ et al (2009) Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc Natl Acad Sci 106:9403PubMedCrossRefGoogle Scholar
  123. 123.
    Hockett RD, Michael Kilby J, Derdeyn CA, Saag MS, Sillers M et al (1999) Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J Exp Med 189:1545–1554. doi: 10.1084/jem.189.10.1545 PubMedCrossRefGoogle Scholar
  124. 124.
    Markowitz M, Louie M, Hurley A, Sun E, Di Mascio M et al (2003) A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J Virol 77:5037–5038. doi: 10.1128/JVI.77.8.5037-5038.2003 PubMedCrossRefGoogle Scholar
  125. 125.
    Ewens WJ (2004) 1.4.3 The stochastic theory. In: Mathematical population genetics: theoretical introduction. Springer, Berlin, pp 27–28Google Scholar
  126. 126.
    Rouzine I, Coffin J (1999) Linkage disequilibrium test implies a large effective population number for HIV in vivo. Proc Natl Acad Sci USA 96:10758PubMedCrossRefGoogle Scholar
  127. 127.
    Brown AJL (1997) Analysis of HIV-1 env gene sequences reveals evidence for a low effective number in the viral population. Proc Natl Acad Sci USA 94:1862PubMedCrossRefGoogle Scholar
  128. 128.
    Margot N, Lu B, Cheng A, Miller M (2006) Resistance development over 144 weeks in treatment-naive patients receiving tenofovir disoproxil fumarate or stavudine with lamivudine and efavirenz in Study 903*. HIV Med 7:442–450PubMedCrossRefGoogle Scholar
  129. 129.
    Shen L, Rabi SA, Siliciano RF (2009) A novel method for determining the inhibitory potential of anti-HIV drugs. Trends Pharmacol Sci 30:610–616. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  130. 130.
    Jolly C, Kashefi K, Hollinshead M, Sattentau QJ (2004) HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199:283PubMedCrossRefGoogle Scholar
  131. 131.
    Groot F, Welsch S, Sattentau QJ (2008) Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood 111:4660PubMedCrossRefGoogle Scholar
  132. 132.
    Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A et al (2011) Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477:95–98. doi: 10.1038/nature10347 PubMedCrossRefGoogle Scholar
  133. 133.
    Best BM, Koopmans PP, Letendre SL, Capparelli EV, Rossi SS et al (2011) Efavirenz concentrations in CSF exceed IC50 for wild-type HIV. J Antimicrob Chemother 66:354PubMedCrossRefGoogle Scholar
  134. 134.
    Blankson JN, Persaud D, Siliciano RF (2002) The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med 53:557–593PubMedCrossRefGoogle Scholar
  135. 135.
    Crowe S, Zhu T, Muller WA (2003) The contribution of monocyte infection and trafficking to viral persistence, and maintenance of the viral reservoir in HIV infection. J Leukocyt Biol 74:635–641CrossRefGoogle Scholar
  136. 136.
    Smit TK, Brew BJ, Tourtellotte W, Morgello S, Gelman BB et al (2004) Independent evolution of human immunodeficiency virus (HIV) drug resistance mutations in diverse areas of the brain in HIV-infected patients, with and without dementia, on antiretroviral treatment. J Virol 78:10133PubMedCrossRefGoogle Scholar
  137. 137.
    Edén A, Fuchs D, Hagberg L, Nilsson S, Spudich S et al (2010) HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis 202:1819PubMedCrossRefGoogle Scholar
  138. 138.
    Regoes R, Bonhoeffer S (2002) HIV coreceptor usage and drug treatment. J Theor Biol 217:443–457PubMedCrossRefGoogle Scholar
  139. 139.
    Weinberger AD, Perelson AS, Ribeiro RM, Weinberger LS (2009) Accelerated immunodeficiency by anti-CCR5 treatment in HIV infection. PLoS Comput Biol 5:e1000467. doi: 10.1371/journal.pcbi.1000467 PubMedCrossRefGoogle Scholar
  140. 140.
    Beerenwinkel N, Schmidt B, Walter H, Kaiser R, Lengauer T et al (2002) Diversity and complexity of HIV-1 drug resistance: a bioinformatics approach to predicting phenotype from genotype. Proc Natl Acad Sci 99:8271–8276. doi: 10.1073/pnas.112177799 PubMedCrossRefGoogle Scholar
  141. 141.
    Beerenwinkel N, Lengauer T, Daumer M, Kaiser R, Walter H et al (2003) Methods for optimizing antiviral combination therapies. Bioinformatics 19:i16PubMedCrossRefGoogle Scholar
  142. 142.
    Lawyer G, Altmann A, Thielen A, Zazzi M, Sönnerborg A et al (2011) HIV-1 mutational pathways under multidrug therapy. AIDS Res Ther 8:26. doi: 10.1186/1742-6405-8-26 PubMedCrossRefGoogle Scholar
  143. 143.
    Crotty S, Cameron C, Andino R (2002) Ribavirin’s antiviral mechanism of action: lethal mutagenesis? J Mol Med 80:86–95. doi: 10.1007/s00109-001-0308-0 PubMedCrossRefGoogle Scholar
  144. 144.
    Ávila-Ríos S, Reyes-Terán G, Espinosa E (2007) Cornering HIV: taking advantage of interactions between selective pressures. Med Hypotheses 69:422–431. doi: 10.1016/j.mehy.2006.12.012 PubMedCrossRefGoogle Scholar
  145. 145.
    Smith-Franklin BA, Keele BF, Tew JG, Gartner S, Szakal AK et al (2002) Follicular dendritic cells and the persistence of HIV infectivity: the role of antibodies and Fc-gamma receptors. J Immunol 168:2408PubMedGoogle Scholar
  146. 146.
    Kussell E, Kishony R, Balaban NQ, Leibler S (2005) Bacterial persistence: a model of survival in changing environments. Genetics 169:1807–1814. doi: 10.1534/genetics.104.035352 PubMedCrossRefGoogle Scholar
  147. 147.
    Siliciano JD, Siliciano RF (2006) The latent reservoir for HIV-1 in resting CD4+ T cells: a barrier to cure. Curr Opin HIV AIDS 1:121–128. doi: 10.1097/01.COH.0000209582.82328.b8 PubMedGoogle Scholar
  148. 148.
    Rambaut A, Posada D, Crandall KA, Holmes EC (2004) The causes and consequences of HIV evolution. Nat Rev Genet 5:52–61PubMedCrossRefGoogle Scholar
  149. 149.
    Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–182. doi: 10.1016/j.cell.2005.06.006 PubMedCrossRefGoogle Scholar
  150. 150.
    Weinberger LS, Shenk T (2006) An HIV feedback resistor: auto-regulatory circuit deactivator and noise buffer. PLoS Biol 5:e9. doi: 10.1371/journal.pbio.0050009 CrossRefGoogle Scholar
  151. 151.
    Singh A, Weinberger LS (2009) Stochastic gene expression as a molecular switch for viral latency. Curr Opin Microbiol 12:460–466. doi: 10.1016/j.mib.2009.06.016 PubMedCrossRefGoogle Scholar
  152. 152.
    Pingen M, Nijhuis M, de Bruijn JA, Boucher CAB, Wensing AMJ (2011) Evolutionary pathways of transmitted drug-resistant HIV-1. J Antimicrob Chemother 66(7):1467–1480PubMedCrossRefGoogle Scholar
  153. 153.
    van de Vijver D, Wensing AMJ, Boucher CAB (2007) The epidemiology of transmission of drug resistant HIV-1. In: Leitner T (ed) HIV Sequence Compendium 2007. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los AlamosGoogle Scholar
  154. 154.
    Hué S, Gifford RJ, Dunn D, Fernhill E, Pillay D (2009) Demonstration of sustained drug-resistant human immunodeficiency virus type 1 lineages circulating among treatment-naïve individuals. J Virol 83:2645–2654. doi: 10.1128/JVI.01556-08 PubMedCrossRefGoogle Scholar
  155. 155.
    Little SJ, Frost SDW, Wong JK, Smith DM, Pond SLK et al (2008) Persistence of transmitted drug resistance among subjects with primary human immunodeficiency virus infection. J Virol 82:5510–5518. doi: 10.1128/JVI.02579-07 PubMedCrossRefGoogle Scholar
  156. 156.
    Handel A, Regoes RR, Antia R (2006) The role of compensatory mutations in the emergence of drug resistance. PLoS Comput Biol 2:e137. doi: 10.1371/journal.pcbi.0020137 PubMedCrossRefGoogle Scholar
  157. 157.
    Schulz zur Wiesch P, Engelstadter J, Bonhoeffer S (2010) Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrob Agents Chemother 54:2085–2095, 10.1128/AAC.01460-09PubMedCrossRefGoogle Scholar
  158. 158.
    Harrison L, Castro H, Cane P, Pillay D, Booth C et al (2010) The effect of transmitted HIV-1 drug resistance on pre-therapy viral load. AIDS 24:1917–1922. doi: 10.1097/QAD.0b013e32833c1d93 PubMedCrossRefGoogle Scholar
  159. 159.
    Wittkop L, Günthard HF, de Wolf F, Dunn D, Cozzi-Lepri A et al (2011) Effect of transmitted drug resistance on virological and immunological response to initial combination antiretroviral therapy for HIV (EuroCoord-CHAIN joint project): a European multicohort study. Lancet Infect Dis 11:363–371. doi: 10.1016/S1473-3099(11)70032-9 PubMedCrossRefGoogle Scholar
  160. 160.
    Smith RJ, Okano JT, Kahn JS, Bodine EN, Blower S (2010) Evolutionary dynamics of complex networks of HIV drug-resistant strains: the case of San Francisco. Science 327(5966):697–701. doi: 10.1126/science.1180556 PubMedCrossRefGoogle Scholar
  161. 161.
    zur Wiesch PA, Kouyos R, Engelstädter J, Regoes RR, Bonhoeffer S (2011) Population biological principles of drug-resistance evolution in infectious diseases. Infect Dis 11:236–247. doi: 10.1016/S1473-3099(10)70264-4 Google Scholar
  162. 162.
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J et al (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Micro 8:251–259. doi: 10.1038/nrmicro2312 CrossRefGoogle Scholar
  163. 163.
    Cohen ML (1992) Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 257:1050–1055. doi: 10.1126/science.257.5073.1050 PubMedCrossRefGoogle Scholar
  164. 164.
    Edlin BR, Tokars JI, Grieco MH, Crawford JT, Williams J et al (1992) An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome. N Engl J Med 326:1514–1521PubMedCrossRefGoogle Scholar
  165. 165.
    Cohen T, Murray M (2004) Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 10:1117–1121. doi: 10.1038/nm1110 PubMedCrossRefGoogle Scholar
  166. 166.
    Bangsberg DR, Acosta EP, Gupta R, Guzman D, Riley ED et al (2006) Adherence-resistance relationships for protease and non-nucleoside reverse transcriptase inhibitors explained by virological fitness. AIDS 20:223–231. doi: 10.1097/01.aids.0000199825.34241.49 PubMedCrossRefGoogle Scholar
  167. 167.
    Supervie V, García-Lerma JG, Heneine W, Blower S (2010) HIV, transmitted drug resistance, and the paradox of preexposure prophylaxis. Proc Natl Acad Sci USA 107:12381–12386. doi: 10.1073/pnas.1006061107 PubMedCrossRefGoogle Scholar
  168. 168.
    Blower S, Bodine E, Kahn J, McFarland W (2005) The antiretroviral rollout and drug-resistant HIV in Africa: insights from empirical data and theoretical models. AIDS 19:1–14PubMedCrossRefGoogle Scholar
  169. 169.
    Shankarappa R, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D et al (1999) Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. J Virol 73:10489–10502PubMedGoogle Scholar
  170. 170.
    Lee HY, Perelson AS, Park S-C, Leitner T (2008) Dynamic correlation between intrahost HIV-1 quasispecies evolution and disease progression. PLoS Comput Biol 4:e1000240. doi: 10.1371%2Fjournal.pcbi.1000240 PubMedCrossRefGoogle Scholar
  171. 171.
    Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT et al (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA 105:7552–7557. doi: 10.1073/pnas.0802203105 PubMedCrossRefGoogle Scholar
  172. 172.
    Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  173. 173.
    Galvani AP (2005) The role of mutation accumulation in HIV progression. Proc R Soc B 272:1851–1858. doi: 10.1098/rspb.2005.3083 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Alison L. Hill
    • 1
    • 2
  • Daniel I. S. Rosenbloom
    • 1
  • Martin A. Nowak
    • 1
  1. 1.Program for Evolutionary Dynamics, Department of Mathematics, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Biophysics Program and Harvard-MIT Division of Health Sciences and TechnologyHarvard UniversityCambridgeUSA

Personalised recommendations