Journal of Molecular Medicine

, Volume 90, Issue 3, pp 233–244 | Cite as

Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease

Review

Abstract

Nitric oxide participates in cellular signal transduction largely through S-nitrosylation of allosteric and active-site cysteine thiols within proteins, forming S-nitroso-proteins (SNO-proteins). S-nitrosylation of proteins has been demonstrated to affect a broad range of functional parameters including enzymatic activity, subcellular localization, protein–protein interactions, and protein stability. Analogous to other ubiquitous posttranslational modifications that are regulated enzymatically, including phosphorylation and ubiquitinylation, accumulating evidence suggests the existence of enzymatic mechanisms for regulating protein S-nitrosylation. In particular, studies have led to the identification of multiple enzymes (nitrosylases and denitrosylases) that participate in targeted S-nitrosylation or denitrosylation of proteins in physiological settings. Nitrosylases are best characterized in the context of transnitrosylation in which a SNO-protein transfers an NO group to an acceptor protein (Cys-to-Cys transfer), but examples of transnitrosylation catalyzed by metalloproteins (Metal-to-Cys transfer) also exist. By contrast, denitrosylases remove the NO group from SNO-proteins, ultimately using reducing equivalents derived from NADH or NADPH. Here, we focus on the recent discoveries of nitrosylases and denitrosylases and the notion that their aberrant activities may play roles in health and disease.

Keywords

S-nitrosylation SNO-proteins GSNO Nitric oxide Active-site cysteine thiols Nitrosylases Denitrosylase 

References

  1. 1.
    Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732PubMedGoogle Scholar
  2. 2.
    Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1–5PubMedCrossRefGoogle Scholar
  3. 3.
    Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166PubMedCrossRefGoogle Scholar
  4. 4.
    Foster MW, McMahon TJ, Stamler JS (2003) S-nitrosylation in health and disease. Trends Mol Med 9:160–168PubMedCrossRefGoogle Scholar
  5. 5.
    Perez-Mato I, Castro C, Ruiz FA, Corrales FJ, Mato JM (1999) Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J Biol Chem 274:17075–17079PubMedCrossRefGoogle Scholar
  6. 6.
    Savidge TC, Urvil P, Oezguen N, Ali K, Choudhury A, Acharya V, Pinchuk I, Torres AG, English RD, Wiktorowicz JE et al (2011) Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins. Nat Med 17:1136–1141PubMedCrossRefGoogle Scholar
  7. 7.
    Seth D, Stamler JS (2011) The SNO-proteome: causation and classifications. Curr Opin Chem Biol 15:129–136PubMedCrossRefGoogle Scholar
  8. 8.
    Stamler JS, Toone EJ, Lipton SA, Sucher NJ (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18:691–696PubMedCrossRefGoogle Scholar
  9. 9.
    Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970PubMedCrossRefGoogle Scholar
  10. 10.
    Nedospasov A, Rafikov R, Beda N, Nudler E (2000) An autocatalytic mechanism of protein nitrosylation. Proc Natl Acad Sci USA 97:13543–13548PubMedCrossRefGoogle Scholar
  11. 11.
    Foster MW, Forrester MT, Stamler JS (2009) A protein microarray-based analysis of S-nitrosylation. Proc Natl Acad Sci USA 106:18948–18953PubMedCrossRefGoogle Scholar
  12. 12.
    Doulias PT, Greene JL, Greco TM, Tenopoulou M, Seeholzer SH, Dunbrack RL, Ischiropoulos H (2010) Structural profiling of endogenous S-nitrosocysteine residues reveals unique features that accommodate diverse mechanisms for protein S-nitrosylation. Proc Natl Acad Sci USA 107:16958–16963PubMedCrossRefGoogle Scholar
  13. 13.
    Marino SM, Gladyshev VN (2010) Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol 395:844–859PubMedCrossRefGoogle Scholar
  14. 14.
    Foster MW, Stamler JS (2004) New insights into protein S-nitrosylation. Mitochondria as a model system. J Biol Chem 279:25891–25897PubMedCrossRefGoogle Scholar
  15. 15.
    Bosworth CA, Toledo JC Jr, Zmijewski JW, Li Q, Lancaster JR Jr (2009) Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc Natl Acad Sci 106:4671–4676PubMedCrossRefGoogle Scholar
  16. 16.
    Foster MW, Liu L, Zeng M, Hess DT, Stamler JS (2009) A genetic analysis of nitrosative stress. Biochemistry 48:792–799PubMedCrossRefGoogle Scholar
  17. 17.
    Jia L, Bonaventura C, Bonaventura J, Stamler JS (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221–226PubMedCrossRefGoogle Scholar
  18. 18.
    Gow AJ, Stamler JS (1998) Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391:169–173PubMedCrossRefGoogle Scholar
  19. 19.
    Basu S, Keszler A, Azarova NA, Nwanze N, Perlegas A, Shiva S, Broniowska KA, Hogg N, Kim-Shapiro DB (2010) A novel role for cytochrome c: efficient catalysis of S-nitrosothiol formation. Free Radic Biol Med 48:255–263PubMedCrossRefGoogle Scholar
  20. 20.
    Inoue K, Akaike T, Miyamoto Y, Okamoto T, Sawa T, Otagiri M, Suzuki S, Yoshimura T, Maeda H (1999) Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem 274:27069–27075PubMedCrossRefGoogle Scholar
  21. 21.
    Mani K, Cheng F, Havsmark B, David S, Fransson LA (2004) Involvement of glycosylphosphatidylinositol-linked ceruloplasmin in the copper/zinc-nitric oxide-dependent degradation of glypican-1 heparan sulfate in rat C6 glioma cells. J Biol Chem 279:12918–12923PubMedCrossRefGoogle Scholar
  22. 22.
    Petersen MG, Dewilde S, Fago A (2008) Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J Inorg Biochem 102:1777–1782PubMedCrossRefGoogle Scholar
  23. 23.
    Weichsel A, Maes EM, Andersen JF, Valenzuela JG, Shokhireva T, Walker FA, Montfort WR (2005) Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein. Proc Natl Acad Sci USA 102:594–599PubMedCrossRefGoogle Scholar
  24. 24.
    Stamler JS, Hess DT (2010) Nascent nitrosylases. Nat Cell Biol 12:1024–1026PubMedCrossRefGoogle Scholar
  25. 25.
    Singel DJ, Stamler JS (2005) Chemical physiology of blood flow regulation by red blood cells: the role of nitric oxide and S-nitrosohemoglobin. Annu Rev Physiol 67:99–145PubMedCrossRefGoogle Scholar
  26. 26.
    Pawloski JR, Hess DT, Stamler JS (2001) Export by red blood cells of nitric oxide bioactivity. Nature 409:622–626PubMedCrossRefGoogle Scholar
  27. 27.
    Pawloski JR, Hess DT, Stamler JS (2005) Impaired vasodilation by red blood cells in sickle cell disease. Proc Natl Acad Sci USA 102:2531–2536PubMedCrossRefGoogle Scholar
  28. 28.
    Reynolds JD, Ahearn GS, Angelo M, Zhang J, Cobb F, Stamler JS (2007) S-nitrosohemoglobin deficiency: a mechanism for loss of physiological activity in banked blood. Proc Natl Acad Sci USA 104:17058–17062PubMedCrossRefGoogle Scholar
  29. 29.
    McMahon TJ, Ahearn GS, Moya MP, Gow AJ, Huang YC, Luchsinger BP, Nudelman R, Yan Y, Krichman AD, Bashore TM et al (2005) A nitric oxide processing defect of red blood cells created by hypoxia: deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proc Natl Acad Sci USA 102:14801–14806PubMedCrossRefGoogle Scholar
  30. 30.
    Liu L, Yan Y, Zeng M, Zhang J, Hanes MA, Ahearn G, McMahon TJ, Dickfeld T, Marshall HE, Que LG et al (2004) Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116:617–628PubMedCrossRefGoogle Scholar
  31. 31.
    Crawford JH, Chacko BK, Pruitt HM, Piknova B, Hogg N, Patel RP (2004) Transduction of NO-bioactivity by the red blood cell in sepsis: novel mechanisms of vasodilation during acute inflammatory disease. Blood 104:1375–1382PubMedCrossRefGoogle Scholar
  32. 32.
    Doctor A, Platt R, Sheram ML, Eischeid A, McMahon T, Maxey T, Doherty J, Axelrod M, Kline J, Gurka M et al (2005) Hemoglobin conformation couples erythrocyte S-nitrosothiol content to O2 gradients. Proc Natl Acad Sci USA 102:5709–5714PubMedCrossRefGoogle Scholar
  33. 33.
    Erzurum SC, Ghosh S, Janocha AJ, Xu W, Bauer S, Bryan NS, Tejero J, Hemann C, Hille R, Stuehr DJ et al (2007) Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. Proc Natl Acad Sci USA 104:17593–17598PubMedCrossRefGoogle Scholar
  34. 34.
    Janocha AJ, Koch CD, Tiso M, Ponchia A, Doctor A, Gibbons L, Gaston B, Beall CM, Erzurum SC (2011) Nitric oxide during altitude acclimatization. N Engl J Med 365:1942–1944PubMedCrossRefGoogle Scholar
  35. 35.
    Tristan C, Shahani N, Sedlak TW, Sawa A (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 23:317–323PubMedCrossRefGoogle Scholar
  36. 36.
    Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674PubMedCrossRefGoogle Scholar
  37. 37.
    Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester LD, Snyder SH (2010) GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 12:1094–1100PubMedCrossRefGoogle Scholar
  38. 38.
    Holmgren A (2008) Biochemistry. SNO removal. Science 320:1019–1020PubMedCrossRefGoogle Scholar
  39. 39.
    Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410PubMedCrossRefGoogle Scholar
  40. 40.
    Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X, Tzitzilonis C, Meng F, Gu Z, Holland EA et al (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39:184–195PubMedCrossRefGoogle Scholar
  41. 41.
    Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759PubMedCrossRefGoogle Scholar
  42. 42.
    Cruz JC, Tsai LH (2004) A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease. Curr Opin Neurobiol 14:390–394PubMedCrossRefGoogle Scholar
  43. 43.
    Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA (2011) S-nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci USA 108:14330–14335PubMedCrossRefGoogle Scholar
  44. 44.
    Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105PubMedCrossRefGoogle Scholar
  45. 45.
    Lillig CH, Holmgren A (2007) Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Signal 9:25–47PubMedCrossRefGoogle Scholar
  46. 46.
    Mitchell DA, Marletta MA (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1:154–158PubMedCrossRefGoogle Scholar
  47. 47.
    Mitchell DA, Morton SU, Fernhoff NB, Marletta MA (2007) Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci USA 104:11609–11614PubMedCrossRefGoogle Scholar
  48. 48.
    Wu C, Liu T, Chen W, Oka S, Fu C, Jain MR, Parrott AM, Baykal AT, Sadoshima J, Li H (2010) Redox regulatory mechanism of transnitrosylation by thioredoxin. Mol Cell Proteomics 9:2262–2275PubMedCrossRefGoogle Scholar
  49. 49.
    Hashemy SI, Holmgren A (2008) Regulation of the catalytic activity and structure of human thioredoxin 1 via oxidation and S-nitrosylation of cysteine residues. J Biol Chem 283:21890–21898PubMedCrossRefGoogle Scholar
  50. 50.
    Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054PubMedCrossRefGoogle Scholar
  51. 51.
    Ito T, Yamakuchi M, Lowenstein CJ (2011) Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor. J Biol Chem 286:11179–11184PubMedCrossRefGoogle Scholar
  52. 52.
    Ovadia H, Haim Y, Nov O, Almog O, Kovsan J, Bashan N, Benhar M, Rudich A (2011) Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity. J Biol Chem 286:30433–30443PubMedCrossRefGoogle Scholar
  53. 53.
    Forrester MT, Seth D, Hausladen A, Eyler CE, Foster MW, Matsumoto A, Benhar M, Marshall HE, Stamler JS (2009) Thioredoxin-interacting protein (Txnip) is a feedback regulator of S-nitrosylation. J Biol Chem 284:36160–36166PubMedCrossRefGoogle Scholar
  54. 54.
    Benhar M, Thompson JW, Moseley MA, Stamler JS (2010) Identification of S-nitrosylated targets of thioredoxin using a quantitative proteomic approach. Biochemistry 49:6963–6969PubMedCrossRefGoogle Scholar
  55. 55.
    Forrester MT, Thompson JW, Foster MW, Nogueira L, Moseley MA, Stamler JS (2009) Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol 27:557–559PubMedCrossRefGoogle Scholar
  56. 56.
    Nikitovic D, Holmgren A (1996) S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 271:19180–19185PubMedCrossRefGoogle Scholar
  57. 57.
    Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, Ivanova J, Pitt B, Billiar TR, Kagan VE (2005) Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols. J Am Chem Soc 127:15815–15823PubMedCrossRefGoogle Scholar
  58. 58.
    Wu C, Parrott AM, Fu C, Liu T, Marino SM, Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S et al (2011) Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid Redox Signal 15:2565–2604PubMedCrossRefGoogle Scholar
  59. 59.
    Bateman RL, Rauh D, Tavshanjian B, Shokat KM (2008) Human carbonyl reductase 1 is an S-nitrosoglutathione reductase. J Biol Chem 283:35756–35762PubMedCrossRefGoogle Scholar
  60. 60.
    Gaston B, Reilly J, Drazen JM, Fackler J, Ramdev P, Arnelle D, Mullins ME, Sugarbaker DJ, Chee C, Singel DJ et al (1993) Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc Natl Acad Sci USA 90:10957–10961PubMedCrossRefGoogle Scholar
  61. 61.
    Jensen DE, Belka GK, Du Bois GC (1998) S-nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem J 331(Pt 2):659–668PubMedGoogle Scholar
  62. 62.
    Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494PubMedCrossRefGoogle Scholar
  63. 63.
    Staab CA, Alander J, Brandt M, Lengqvist J, Morgenstern R, Grafstrom RC, Hoog JO (2008) Reduction of S-nitrosoglutathione by alcohol dehydrogenase 3 is facilitated by substrate alcohols via direct cofactor recycling and leads to GSH-controlled formation of glutathione transferase inhibitors. Biochem J 413:493–504PubMedCrossRefGoogle Scholar
  64. 64.
    Paige JS, Xu G, Stancevic B, Jaffrey SR (2008) Nitrosothiol reactivity profiling identifies S-nitrosylated proteins with unexpected stability. Chem Biol 15:1307–1316PubMedCrossRefGoogle Scholar
  65. 65.
    Que LG, Liu L, Yan Y, Whitehead GS, Gavett SH, Schwartz DA, Stamler JS (2005) Protection from experimental asthma by an endogenous bronchodilator. Science 308:1618–1621PubMedCrossRefGoogle Scholar
  66. 66.
    Whalen EJ, Foster MW, Matsumoto A, Ozawa K, Violin JD, Que LG, Nelson CD, Benhar M, Keys JR, Rockman HA et al (2007) Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 129:511–522PubMedCrossRefGoogle Scholar
  67. 67.
    Ozawa K, Whalen EJ, Nelson CD, Mu Y, Hess DT, Lefkowitz RJ, Stamler JS (2008) S-nitrosylation of beta-arrestin regulates beta-adrenergic receptor trafficking. Mol Cell 31:395–405PubMedCrossRefGoogle Scholar
  68. 68.
    Wei W, Li B, Hanes MA, Kakar S, Chen X, Liu L (2010) S-nitrosylation from GSNOR deficiency impairs DNA repair and promotes hepatocarcinogenesis. Sci Transl Med 2:19ra13PubMedCrossRefGoogle Scholar
  69. 69.
    Choudhry S, Que LG, Yang Z, Liu L, Eng C, Kim SO, Kumar G, Thyne S, Chapela R, Rodriguez-Santana JR et al (2010) GSNO reductase and beta2-adrenergic receptor gene–gene interaction: bronchodilator responsiveness to albuterol. Pharmacogenet Genomics 20:351–358PubMedCrossRefGoogle Scholar
  70. 70.
    Moore PE, Ryckman KK, Williams SM, Patel N, Summar ML, Sheller JR (2009) Genetic variants of GSNOR and ADRB2 influence response to albuterol in African-American children with severe asthma. Pediatr Pulmonol 44:649–654PubMedCrossRefGoogle Scholar
  71. 71.
    Wu H, Romieu I, Sienra-Monge JJ, Estela Del Rio-Navarro B, Anderson DM, Jenchura CA, Li H, Ramirez-Aguilar M, Del Carmen Lara-Sanchez I, London SJ (2007) Genetic variation in S-nitrosoglutathione reductase (GSNOR) and childhood asthma. J Allergy Clin Immunol 120:322–328PubMedCrossRefGoogle Scholar
  72. 72.
    Que LG, Yang Z, Stamler JS, Lugogo NL, Kraft M (2009) S-nitrosoglutathione reductase: an important regulator in human asthma. Am J Respir Crit Care Med 180:226–231PubMedCrossRefGoogle Scholar
  73. 73.
    Lima B, Lam GK, Xie L, Diesen DL, Villamizar N, Nienaber J, Messina E, Bowles D, Kontos CD, Hare JM et al (2009) Endogenous S-nitrosothiols protect against myocardial injury. Proc Natl Acad Sci USA 106:6297–6302PubMedCrossRefGoogle Scholar
  74. 74.
    Sun X, Qiu J, Strong SA, Green LS, Wasley JW, Blonder JP, Colagiovanni DB, Mutka SC, Stout AM, Richards JP et al (2011) Discovery of potent and novel S-nitrosoglutathione reductase inhibitors devoid of cytochrome P450 activities. Bioorg Med Chem Lett 21:5849–5853PubMedCrossRefGoogle Scholar
  75. 75.
    Sun X, Qiu J, Strong SA, Green LS, Wasley JW, Colagiovanni DB, Mutka SC, Blonder JP, Stout AM, Richards JP et al (2011) Structure–activity relationships of pyrrole based S-nitrosoglutathione reductase inhibitors: pyrrole regioisomers and propionic acid replacement. Bioorg Med Chem Lett 21:3671–3675PubMedCrossRefGoogle Scholar
  76. 76.
    Colagiovanni DB, Drolet DW, Langlois-Forget E, Piche MP, Looker D, Rosenthal GJ (2011) A nonclinical safety and pharmacokinetic evaluation of N6022: a first-in-class S-nitrosoglutathione reductase inhibitor for the treatment of asthma. Regul Toxicol Pharmacol 62:115–124PubMedCrossRefGoogle Scholar
  77. 77.
    Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102:8054–8059PubMedCrossRefGoogle Scholar
  78. 78.
    Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH et al (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268PubMedCrossRefGoogle Scholar
  79. 79.
    Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956PubMedCrossRefGoogle Scholar
  80. 80.
    Chen R, Sun S, Wang C, Li Y, Liang Y, An F, Li C, Dong H, Yang X, Zhang J et al (2009) The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Res 19:1377–1387PubMedCrossRefGoogle Scholar
  81. 81.
    Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant cell 20:786–802PubMedCrossRefGoogle Scholar
  82. 82.
    Jourd’heuil D, Laroux FS, Miles AM, Wink DA, Grisham MB (1999) Effect of superoxide dismutase on the stability of S-nitrosothiols. Arch Biochem Biophys 361:323–330PubMedCrossRefGoogle Scholar
  83. 83.
    Hou Y, Guo Z, Li J, Wang PG (1996) Seleno compounds and glutathione peroxidase catalyzed decomposition of S-nitrosothiols. Biochem Biophys Res Commun 228:88–93PubMedCrossRefGoogle Scholar
  84. 84.
    Trujillo M, Alvarez MN, Peluffo G, Freeman BA, Radi R (1998) Xanthine oxidase-mediated decomposition of S-nitrosothiols. J Biol Chem 273:7828–7834PubMedCrossRefGoogle Scholar
  85. 85.
    Sliskovic I, Raturi A, Mutus B (2005) Characterization of the S-denitrosation activity of protein disulfide isomerase. J Biol Chem 280:8733–8741PubMedCrossRefGoogle Scholar
  86. 86.
    Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517PubMedCrossRefGoogle Scholar
  87. 87.
    Abrams AJ, Farooq A, Wang G (2011) S-nitrosylation of ApoE in Alzheimer’s disease. Biochemistry 50:3405–3407PubMedCrossRefGoogle Scholar
  88. 88.
    Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E et al (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101:10810–10814PubMedCrossRefGoogle Scholar
  89. 89.
    Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, Dawson TM (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331PubMedCrossRefGoogle Scholar
  90. 90.
    Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA (2007) S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci USA 104:18742–18747PubMedCrossRefGoogle Scholar
  91. 91.
    Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, Dawson V, Dawson TM, Chung KK (2009) S-nitrosylation of XIAP compromises neuronal survival in Parkinson Disease. Proc Natl Acad Sci USA 106:4900–4905PubMedCrossRefGoogle Scholar
  92. 92.
    Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190PubMedCrossRefGoogle Scholar
  93. 93.
    Gonzalez DR, Beigi F, Treuer AV, Hare JM (2007) Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc Natl Acad Sci USA 104:20612–20617PubMedCrossRefGoogle Scholar
  94. 94.
    Ueda K, Valdivia C, Medeiros-Domingo A, Tester DJ, Vatta M, Farrugia G, Ackerman MJ, Makielski JC (2008) Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci USA 105:9355–9360PubMedCrossRefGoogle Scholar
  95. 95.
    Gandley RE, Tyurin VA, Huang W, Arroyo A, Daftary A, Harger G, Jiang J, Pitt B, Taylor RN, Hubel CA et al (2005) S-nitrosoalbumin-mediated relaxation is enhanced by ascorbate and copper: effects in pregnancy and preeclampsia plasma. Hypertension 45:21–27PubMedGoogle Scholar
  96. 96.
    Tyurin VA, Liu SX, Tyurina YY, Sussman NB, Hubel CA, Roberts JM, Taylor RN, Kagan VE (2001) Elevated levels of S-nitrosoalbumin in preeclampsia plasma. Circ Res 88:1210–1215PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang HH, Wang YP, Chen DB (2011) Analysis of nitroso-proteomes in normotensive and severe preeclamptic human placentas. Biol Reprod 84:966–975PubMedCrossRefGoogle Scholar
  98. 98.
    Palmer LA, Doctor A, Chhabra P, Sheram ML, Laubach VE, Karlinsey MZ, Forbes MS, Macdonald T, Gaston B (2007) S-nitrosothiols signal hypoxia-mimetic vascular pathology. J Clin Invest 117:2592–2601PubMedCrossRefGoogle Scholar
  99. 99.
    Mukhopadhyay S, Lee J, Sehgal PB (2008) Depletion of the ATPase NSF from Golgi membranes with hypo-S-nitrosylation of vasorelevant proteins in endothelial cells exposed to monocrotaline pyrrole. Am J Physiol Heart Circ Physiol 295:H1943–H1955PubMedCrossRefGoogle Scholar
  100. 100.
    Godoy LC, Moretti AI, Jurado MC, Oxer D, Janiszewski M, Ckless K, Velasco IT, Laurindo FR, Souza HP (2010) Loss of CD40 endogenous S-nitrosylation during inflammatory response in endotoxemic mice and patients with sepsis. Shock 33:626–633PubMedGoogle Scholar
  101. 101.
    Sun J, Picht E, Ginsburg KS, Bers DM, Steenbergen C, Murphy E (2006) Hypercontractile female hearts exhibit increased S-nitrosylation of the L-type Ca2+ channel alpha1 subunit and reduced ischemia/reperfusion injury. Circ Res 98:403–411PubMedCrossRefGoogle Scholar
  102. 102.
    Burger DE, Lu X, Lei M, Xiang FL, Hammoud L, Jiang M, Wang H, Jones DL, Sims SM, Feng Q (2009) Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice. Circulation 120:1345–1354PubMedCrossRefGoogle Scholar
  103. 103.
    Carnes CA, Janssen PM, Ruehr ML, Nakayama H, Nakayama T, Haase H, Bauer JA, Chung MK, Fearon IM, Gillinov AM et al (2007) Atrial glutathione content, calcium current, and contractility. J Biol Chem 282:28063–28073PubMedCrossRefGoogle Scholar
  104. 104.
    Asada K, Kurokawa J, Furukawa T (2009) Redox- and calmodulin-dependent S-nitrosylation of the KCNQ1 channel. J Biol Chem 284:6014–6020PubMedCrossRefGoogle Scholar
  105. 105.
    Bai CX, Namekata I, Kurokawa J, Tanaka H, Shigenobu K, Furukawa T (2005) Role of nitric oxide in Ca2+ sensitivity of the slowly activating delayed rectifier K+ current in cardiac myocytes. Circ Res 96:64–72PubMedCrossRefGoogle Scholar
  106. 106.
    Milsom AB, Jones CJ, Goodfellow J, Frenneaux MP, Peters JR, James PE (2002) Abnormal metabolic fate of nitric oxide in type I diabetes mellitus. Diabetologia 45:1515–1522PubMedCrossRefGoogle Scholar
  107. 107.
    Padron J, Peiro C, Cercas E, Llergo JL, Sanchez-Ferrer CF (2000) Enhancement of S-nitrosylation in glycosylated hemoglobin. Biochem Biophys Res Commun 271:217–221PubMedCrossRefGoogle Scholar
  108. 108.
    Ding SY, Tribble ND, Kraft CA, Markwardt M, Gloyn AL, Rizzo MA (2010) Naturally occurring glucokinase mutations are associated with defects in posttranslational S-nitrosylation. Mol Endocrinol 24:171–177PubMedCrossRefGoogle Scholar
  109. 109.
    Carvalho-Filho MA, Ueno M, Hirabara SM, Seabra AB, Carvalheira JB, de Oliveira MG, Velloso LA, Curi R, Saad MJ (2005) S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes 54:959–967PubMedCrossRefGoogle Scholar
  110. 110.
    Pauli JR, Ropelle ER, Cintra DE, Carvalho-Filho MA, Moraes JC, De Souza CT, Velloso LA, Carvalheira JB, Saad MJ (2008) Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats. J Physiol 586:659–671PubMedCrossRefGoogle Scholar
  111. 111.
    Massy ZA, Fumeron C, Borderie D, Tuppin P, Nguyen-Khoa T, Benoit MO, Jacquot C, Buisson C, Drueke TB, Ekindjian OG et al (2004) Increased pasma S-nitrosothiol concentrations predict cardiovascular outcomes among patients with end-stage renal disease: a prospective study. J Am Soc Nephrol 15:470–476PubMedCrossRefGoogle Scholar
  112. 112.
    Marozkina NV, Yemen S, Borowitz M, Liu L, Plapp M, Sun F, Islam R, Erdmann-Gilmore P, Townsend RR, Lichti CF et al (2010) Hsp 70/Hsp 90 organizing protein as a nitrosylation target in cystic fibrosis therapy. Proc Natl Acad Sci USA 107:11393–11398PubMedCrossRefGoogle Scholar
  113. 113.
    Guo CJ, Atochina-Vasserman EN, Abramova E, Foley JP, Zaman A, Crouch E, Beers MF, Savani RC, Gow AJ (2008) S-nitrosylation of surfactant protein-D controls inflammatory function. PLoS Biol 6:e266PubMedCrossRefGoogle Scholar
  114. 114.
    Lim KH, Ancrile BB, Kashatus DF, Counter CM (2008) Tumour maintenance is mediated by eNOS. Nature 452:646–649PubMedCrossRefGoogle Scholar
  115. 115.
    Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74PubMedCrossRefGoogle Scholar
  116. 116.
    Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, Matecki S, Lacampagne A, Marks AR (2009) Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 15:325–330PubMedCrossRefGoogle Scholar
  117. 117.
    Durham WJ, Aracena-Parks P, Long C, Rossi AE, Goonasekera SA, Boncompagni S, Galvan DL, Gilman CP, Baker MR, Shirokova N et al (2008) RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell 133:53–65PubMedCrossRefGoogle Scholar
  118. 118.
    Marozkina NV, Yemen S, Wei C, Wallrabe H, Nagji AS, Liu L, Morozkina T, Jones DR, Gaston B (2011) S-nitrosoglutathione reductase in human lung cancer. Am J Respir Cell Mol Biol 46:63–70CrossRefGoogle Scholar
  119. 119.
    Straub AC, Billaud M, Johnstone SR, Best AK, Yemen S, Dwyer ST, Looft-Wilson R, Lysiak JJ, Gaston B, Palmer L et al (2011) Compartmentalized connexin 43 s-nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 31:399–407PubMedCrossRefGoogle Scholar
  120. 120.
    Malhotra D, Thimmulappa RK, Mercado N, Ito K, Kombairaju P, Kumar S, Ma J, Feller-Kopman D, Wise R, Barnes P et al (2011) Denitrosylation of HDAC2 by targeting Nrf2 restores glucocorticosteroid sensitivity in macrophages from COPD patients. J Clin Invest 121:4289–4302PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute for Transformative Molecular Medicine and Department of MedicineCase Western Reserve University and University Hospitals Case Medical CenterClevelandUSA
  2. 2.Graduate Training Program, Department of BiochemistryDuke University Medical CenterDurhamUSA
  3. 3.Institute for Transformative Molecular MedicineClevelandUSA

Personalised recommendations