Journal of Molecular Medicine

, Volume 90, Issue 3, pp 255–263 | Cite as

Hydrogen sulfide: a gasotransmitter of clinical relevance

  • M. Scott Vandiver
  • Solomon H. SnyderEmail author


Though the existence of hydrogen sulfide (H2S) in biological tissues has been known for over 300 years, it is the most recently appreciated of the gasotransmitters as a physiologic messenger molecule. The enzymes cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) had long been speculated to generate H2S, and inhibitors of these enzymes had been employed to characterize influences of H2S in various organs. Definitive evidence that H2S is a physiologic regulator came with the development of mice with targeted deletion of CSE and CBS. Best characterized is the role of H2S, formed by CSE, as an endothelial derived relaxing factor that normally regulates blood pressure by acting through ATP-sensitive potassium channels. H2S participates in various phases of the inflammatory process, predominantly exerting anti-inflammatory actions. Currently, the most advanced efforts to develop therapeutic agents involve the combination of H2S donors with non-steroidal anti-inflammatory drugs (NSAIDs). The H2S releasing moiety provides cytoprotection to gastric mucosa normally adversely affected by NSAIDs while the combination of H2S and inhibition of prostaglandin synthesis may afford synergistic anti-inflammatory influences.


Sulfhydration Cardio protection Inflammation Cystathionine γ-lyase Cystathionine-β-synthase 



This work has been supported by National Institutes of Health Medical Scientist Training Program Award (T32 GM007309) to M.S.V. and US Public Health Service Grants (MH018501) to S.H.S.


  1. 1.
    Lloyd D (2006) Hydrogen sulfide: clandestine microbial messenger? Trends Microbiol 14:456–462PubMedCrossRefGoogle Scholar
  2. 2.
    Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935PubMedCrossRefGoogle Scholar
  3. 3.
    Kimura H, Nagai Y, Umemura K, Kimura Y (2005) Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7:795–803PubMedCrossRefGoogle Scholar
  4. 4.
    Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41:203–236PubMedCrossRefGoogle Scholar
  5. 5.
    Hetrick EM, Schoenfisch MH (2009) Analytical chemistry of nitric oxide. Annu Rev Anal Chem (Palo Alto Calif) 2:409–433CrossRefGoogle Scholar
  6. 6.
    Bredt DS (2003) Nitric oxide signaling specificity—the heart of the problem. Journal of Cell Science 116:9–15PubMedCrossRefGoogle Scholar
  7. 7.
    Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87:682–685PubMedCrossRefGoogle Scholar
  8. 8.
    Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590PubMedCrossRefGoogle Scholar
  9. 9.
    Rapoport RM, Draznin MB, Murad F (1983) Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306:174–176PubMedCrossRefGoogle Scholar
  10. 10.
    Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 89:444–448PubMedCrossRefGoogle Scholar
  11. 11.
    Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Science Signaling 2:ra72PubMedCrossRefGoogle Scholar
  12. 12.
    Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770PubMedCrossRefGoogle Scholar
  13. 13.
    Ishii I, Akahoshi N, Yu X-N, Kobayashi Y, Namekata K, Komaki G, Kimura H (2004) Murine cystathionine gamma-lyase: complete cDNA and genomic sequences, promoter activity, tissue distribution and developmental expression. Biochem J 381:113–123PubMedCrossRefGoogle Scholar
  14. 14.
    Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 19:1854–1856Google Scholar
  15. 15.
    Linden DR, Sha L, Mazzone A, Stoltz GJ, Bernard CE, Furne JK, Levitt MD, Farrugia G, Szurszewski JH (2008) Production of the gaseous signal molecule hydrogen sulfide in mouse tissues. J Neurochem 106:1577–1585PubMedGoogle Scholar
  16. 16.
    Boehning D, Sedaghat L, Sedlak TW, Snyder SH (2004) Heme oxygenase-2 is activated by calcium-calmodulin. J Biol Chem 279:30927–30930PubMedCrossRefGoogle Scholar
  17. 17.
    Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon monoxide: a putative neural messenger. Science 259:381–384PubMedCrossRefGoogle Scholar
  18. 18.
    Battish R, Cao GY, Lynn RB, Chakder S, Rattan S (2000) Heme oxygenase-2 distribution in anorectum: colocalization with neuronal nitric oxide synthase. Am J Physiol Gastrointest Liver Physiol 278:G148–G155PubMedGoogle Scholar
  19. 19.
    Zakhary R, Gaine SP, Dinerman JL, Ruat M, Flavahan NA, Snyder SH (1996) Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc Natl Acad Sci U S A 93:795–798PubMedCrossRefGoogle Scholar
  20. 20.
    Peng Y-J, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci 107:10719–10724PubMedCrossRefGoogle Scholar
  21. 21.
    Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295:R1479–R1485PubMedCrossRefGoogle Scholar
  22. 22.
    Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M (2010) Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 13:157–192PubMedCrossRefGoogle Scholar
  23. 23.
    Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41:113–121PubMedCrossRefGoogle Scholar
  24. 24.
    Peng H, Cheng Y, Dai C, King AL, Predmore BL, Lefer DJ, Wang B (2011) A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew Chem Int Ed Engl 50:9672–9675PubMedCrossRefGoogle Scholar
  25. 25.
    Lippert AR, New EJ, Chang CJ (2011) Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J Am Chem Soc 133:10078–10080PubMedCrossRefGoogle Scholar
  26. 26.
    McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56:111–128PubMedGoogle Scholar
  27. 27.
    Singh S, Padovani D, Ra L, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466PubMedCrossRefGoogle Scholar
  28. 28.
    Puranik M, Weeks CL, Lahaye D, Kabil O, Taoka S, Nielsen SB, Groves JT, Banerjee R, Spiro TG (2006) Dynamics of carbon monoxide binding to cystathionine beta-synthase. J Biol Chem 281:13433–13438PubMedCrossRefGoogle Scholar
  29. 29.
    Banerjee R, Zou C-G (2005) Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys 433:144–156PubMedCrossRefGoogle Scholar
  30. 30.
    Chatagner F (1969) Biosynthesis of cystathionine from homoserine and cysteine by rat liver cystathionase. FEBS Lett 4:231–233PubMedCrossRefGoogle Scholar
  31. 31.
    Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Science 334:986–990PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20:6008–6016PubMedCrossRefGoogle Scholar
  33. 33.
    Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature cell biology 3:193–197PubMedCrossRefGoogle Scholar
  34. 34.
    Sen N, Paul BD, Gadalla MM, Nakamura T, Mustafa AK, Tanusree S, Kim S, Snyder SH (2011) Hydrogen sulfide-linked sulfhydration of NF-kB mediates its anti-apoptotic actions. Molecular Cell 45:13–24CrossRefGoogle Scholar
  35. 35.
    Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA (2011) S-nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci U S A 108:14330–14335PubMedCrossRefGoogle Scholar
  36. 36.
    Brandes RP, Schmitz-Winnenthal FH, Feletou M, Godecke A, Huang PL, Vanhoutte PM, Fleming I, Busse R (2000) An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice. Proc Natl Acad Sci U S A 97:9747–9752PubMedCrossRefGoogle Scholar
  37. 37.
    Félétou M, Vanhoutte PM (2007) Endothelium-dependent hyperpolarizations: past beliefs and present facts. Ann Med 39:495–516PubMedCrossRefGoogle Scholar
  38. 38.
    Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283:H474–H480PubMedGoogle Scholar
  39. 39.
    Jiang B, Tang G, Cao K, Wu L, Wang R (2010) Molecular mechanism for H(2)S-induced activation of K(ATP) channels. Antioxid Redox Signal 12:1167–1178PubMedCrossRefGoogle Scholar
  40. 40.
    Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R et al (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268PubMedCrossRefGoogle Scholar
  41. 41.
    Petros A, Lamb G, Leone A, Moncada S, Bennett D, Vallance P (1994) Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovasc Res 28:34–39PubMedCrossRefGoogle Scholar
  42. 42.
    Ishikawa M, Kajimura M, Adachi T, Maruyama K, Makino N, Goda N, Yamaguchi T, Sekizuka E, Suematsu M (2005) Carbon monoxide from heme oxygenase-2 Is a tonic regulator against NO-dependent vasodilatation in the adult rat cerebral microcirculation. Circ Res 97:e104–e114PubMedCrossRefGoogle Scholar
  43. 43.
    Morikawa T, Kajimura M, Nakamura T, Hishiki T, Nakanishi T, Yukutake Y, Nagahata Y, Ishikawa M, Hattori K, Takenouchi T, et al. (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci U S A (in press)Google Scholar
  44. 44.
    Prabhakar NR, Dinerman JL, Agani FH, Snyder SH (1995) Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci U S A 92:1994–1997PubMedCrossRefGoogle Scholar
  45. 45.
    Johansen D, Ytrehus K, Baxter GF (2006) Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury—evidence for a role of K ATP channels. Basic research in cardiology 101:53–60PubMedCrossRefGoogle Scholar
  46. 46.
    Elsey DJ, Fowkes RC, Baxter GF (2010) l-cysteine stimulates hydrogen sulfide synthesis in myocardium associated with attenuation of ischemia-reperfusion injury. J Cardiovasc Pharmacol Ther 15:53–59PubMedCrossRefGoogle Scholar
  47. 47.
    Sivarajah A, McDonald MC, Thiemermann C (2006) The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 26:154–161PubMedCrossRefGoogle Scholar
  48. 48.
    Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104:15560–15565PubMedCrossRefGoogle Scholar
  49. 49.
    Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD, Ichinose F (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120:888–896PubMedCrossRefGoogle Scholar
  50. 50.
    Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C, Sellke FW (2008) The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia-reperfusion injury. Eur J Cardiothorac Surg 33:906–913PubMedCrossRefGoogle Scholar
  51. 51.
    Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC (2008) Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79:632–641PubMedCrossRefGoogle Scholar
  52. 52.
    Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK (2007) Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 42:706–719PubMedCrossRefGoogle Scholar
  53. 53.
    Rossoni G, Sparatore A, Tazzari V, Manfredi B, Del Soldato P, Berti F (2008) The hydrogen sulphide-releasing derivative of diclofenac protects against ischaemia-reperfusion injury in the isolated rabbit heart. Br J Pharmacol 153:100–109PubMedCrossRefGoogle Scholar
  54. 54.
    Sidhapuriwala J, Li L, Sparatore A, Bhatia M, Moore PK (2007) Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur J Pharmacol 569:149–154PubMedCrossRefGoogle Scholar
  55. 55.
    Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 19:1196–1198Google Scholar
  56. 56.
    Zhang J, Sio SWS, Moochhala S, Bhatia M (2010) Role of hydrogen sulfide in severe burn injury-induced inflammation in mice. Mol Med (Cambridge) 16:417–424Google Scholar
  57. 57.
    Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, Pinsky DJ (2001) Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 7:598–604PubMedCrossRefGoogle Scholar
  58. 58.
    Otterbein LE, Zuckerbraun BS, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith RN, Csizmadia E et al (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190PubMedCrossRefGoogle Scholar
  59. 59.
    Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 20:2118–2120CrossRefGoogle Scholar
  60. 60.
    Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong B-S, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite “scavenger”? J Neurochem 90:765–768PubMedCrossRefGoogle Scholar
  61. 61.
    Ekundi-Valentim E, Santos KT, Camargo EA, Denadai-Souza A, Teixeira SA, Zanoni CI, Grant AD, Wallace J, Muscara MN, Costa SK (2010) Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat. Br J Pharmacol 159:1463–1474PubMedCrossRefGoogle Scholar
  62. 62.
    Bhatia M, Sidhapuriwala J, Moochhala SM, Moore PK (2005) Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br J Pharmacol 145:141–144PubMedCrossRefGoogle Scholar
  63. 63.
    Fiorucci S, Orlandi S, Mencarelli A, Caliendo G, Santagada V, Distrutti E, Santucci L, Cirino G, Wallace JL (2007) Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br J Pharmacol 150:996–1002PubMedCrossRefGoogle Scholar
  64. 64.
    Wallace JL, Caliendo G, Santagada V, Cirino G (2010) Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br J Pharmacol 159:1236–1246PubMedCrossRefGoogle Scholar
  65. 65.
    Fiorucci S, Antonelli E, Distrutti E, Rizzo G, Mencarelli A, Orlandi S, Zanardo R, Renga B, Di Sante M, Morelli A et al (2005) Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129:1210–1224PubMedCrossRefGoogle Scholar
  66. 66.
    Lee M, Sparatore A, Del Soldato P, McGeer E, McGeer PL (2010) Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia 58:103–113PubMedCrossRefGoogle Scholar
  67. 67.
    Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S (2007) Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 132:261–271PubMedCrossRefGoogle Scholar
  68. 68.
    Elsey DJ, Fowkes RC, Baxter GF (2010) Regulation of cardiovascular cell function by hydrogen sulfide (H(2)S). Cell biochemistry and function 28:95–106PubMedCrossRefGoogle Scholar
  69. 69.
    Wang M-J, Cai W-J, Zhu Y-C (2010) Mechanisms of angiogenesis: role of hydrogen sulphide. Clin Exp Pharmacol Physiol 37:764–771PubMedCrossRefGoogle Scholar
  70. 70.
    Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12:1111–1123PubMedCrossRefGoogle Scholar
  71. 71.
    Teague B, Asiedu S, Moore PK (2002) The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol 137:139–145PubMedCrossRefGoogle Scholar
  72. 72.
    Xue L, Farrugia G, Miller SM, Ferris CD, Snyder SH, Szurszewski JH (2000) Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes. Proc Natl Acad Sci U S A 97:1851–1855PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of PsychiatryJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations