Journal of Molecular Medicine

, Volume 90, Issue 8, pp 865–875 | Cite as

Circulating microRNAs: novel biomarkers for cardiovascular diseases

  • Jiahong Xu
  • Jiangmin Zhao
  • Graham Evan
  • Chunyang Xiao
  • Yan ChengEmail author
  • Junjie XiaoEmail author


MicroRNAs (miRNAs) are a novel class of small, non-coding, single-stranded RNAs that negatively regulate gene expression via translational inhibition or mRNA degradation followed by protein synthesis repression. Many miRNAs are expressed in a tissue- and/or cell-specific manner and their expression patterns are reflective of underlying patho-physiologic processes. miRNAs can be detected in serum or in plasma in a remarkably stable form, making them attractive biomarkers for human diseases. This review describes the progress of identifying circulating miRNAs as novel biomarkers for diverse cardiovascular diseases, including acute myocardial infarction, heart failure, coronary artery disease, diabetes, stroke, essential hypertension, and acute pulmonary embolism. In addition, the origin and function and the different strategies to identify circulating miRNAs as novel biomarkers for cardiovascular diseases are also discussed. Rarely has an opportunity arisen to advance such new biology for the diagnosis of cardiac diseases.


MicroRNAs Plasma Serum Biomarker Cardiovascular diseases 



None declared.


  1. 1.
    Suzuki HI, Miyazono K (2010) Dynamics of microRNA biogenesis: crosstalk between p53 network and microRNA processing pathway. J Mol Med (Berl) 88:1085–1094CrossRefGoogle Scholar
  2. 2.
    Xiao JJ, Chen YH (2010) MicroRNAs: novel regulators of the heart. J Thorac Dis 2:43–47PubMedGoogle Scholar
  3. 3.
    Sibley CR, Wood MJ (2011) The miRNA pathway in neurological and skeletal muscle disease: implication for pathogenesis and therapy. J Mol Med (Berl) 89:1065–1077CrossRefGoogle Scholar
  4. 4.
    Small EM, Frost RJA, Olson EN (2010) MicroRNAs add a new dimension to cardiovascular disease. Circulation 121:1022–1032PubMedCrossRefGoogle Scholar
  5. 5.
    Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, Hood LE, Galas DJ (2009) Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA 106:4402–4407PubMedCrossRefGoogle Scholar
  6. 6.
    Alevizos I, Illei GG (2010) MicroRNAs as biomarkers in rheumatic diseases. Nat Rev Rheumatol 6:391–398PubMedCrossRefGoogle Scholar
  7. 7.
    Xiao JJ, Chen YH (2010) Prevalence of cardiovascular diseases in China. Front Med China 4:16–20CrossRefGoogle Scholar
  8. 8.
    Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666PubMedCrossRefGoogle Scholar
  9. 9.
    Contu R, Latronico MVG, Condorelli G (2010) Circulating microRNAs as potential biomarkers of coronary artery disease: a promise to be fulfilled? Circ Res 107:573–574PubMedCrossRefGoogle Scholar
  10. 10.
    Margulies KB (2009) MicroRNAs as novel myocardial biomarkers. Clin Chem 55:1897–1899PubMedCrossRefGoogle Scholar
  11. 11.
    Gupta SK, Bang C, Thum T (2010) Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet 3:484–488PubMedCrossRefGoogle Scholar
  12. 12.
    Adachi T, Nakanishi M, Otsuka Y, Nishimura K, Hirokawa G, Goto Y, Nonogi H, Iwai N (2010) Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem 56:1183–1185PubMedCrossRefGoogle Scholar
  13. 13.
    Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R et al (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391:73–77PubMedCrossRefGoogle Scholar
  14. 14.
    Chen C, Yang SL, Wang F, Long GW, Yang X, Chen FQ, Wang DW (2010) Plasma microRNA-361-5p as a biomarker of chronic heart failure. Heart 96:A189CrossRefGoogle Scholar
  15. 15.
    Cheng Y, Tan N, Yang J, Liu X, Cao X, He P, Dong X, Qin S, Zhang C (2010) A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci (Lond) 119:87–95CrossRefGoogle Scholar
  16. 16.
    Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684PubMedCrossRefGoogle Scholar
  17. 17.
    Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K (2009) Expression profile of microRNAs in young stroke patients. PLoS One 4:e7689PubMedCrossRefGoogle Scholar
  18. 18.
    Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817PubMedCrossRefGoogle Scholar
  19. 19.
    Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55:1944–1949PubMedCrossRefGoogle Scholar
  20. 20.
    D'Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M et al (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–2773PubMedCrossRefGoogle Scholar
  21. 21.
    Gidlöf O, Andersson P, van der Pals J, Götberg M, Erlinge D (2011) Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118:217–226PubMedCrossRefGoogle Scholar
  22. 22.
    Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39:959–966PubMedCrossRefGoogle Scholar
  23. 23.
    Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD et al (2009) Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983PubMedCrossRefGoogle Scholar
  24. 24.
    Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Lau WB, Rong R, Yu X et al (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124:175–184PubMedCrossRefGoogle Scholar
  25. 25.
    Xiao J, Jing ZC, Ellinor PT, Liang D, Zhang H, Liu Y, Chen X, Pan L, Lyon R, Liu Y et al (2011) MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med 9:159PubMedCrossRefGoogle Scholar
  26. 26.
    Dimmeler S, Zeiher AM (2010) Circulating microRNAs: novel biomarkers for cardiovascular diseases? Eur Heart J 31:2705–2707PubMedCrossRefGoogle Scholar
  27. 27.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433PubMedCrossRefGoogle Scholar
  28. 28.
    Turchinovich A, Weiz L, Langheinz A, Burwinkel B (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233PubMedCrossRefGoogle Scholar
  29. 29.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008PubMedCrossRefGoogle Scholar
  30. 30.
    Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S et al (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4:446–454PubMedCrossRefGoogle Scholar
  31. 31.
    De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM (2011) Transcoronary concentration gradients of circulating microRNAs. Circulation. doi: 10.1161/CIRCULATIONAHA.111.037572
  32. 32.
    Guo M, Mao X, Ji Q, Lang M, Li S, Peng Y, Zhou W, Xiong B, Zeng Q (2010) miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunol Cell Biol 88:555–564PubMedCrossRefGoogle Scholar
  33. 33.
    Yao R, Ma Y, Du Y, Liao M, Li H, Liang W, Yuan J, Zhijunma YuX, Xiao H et al (2011) The altered expression of inflammation-related microRNAs with microRNA-155 expression correlates with Th17 differentiation in patients with acute coronary syndrome. Cell Mol Immunol. doi: 10.1038/cmi.2011.22
  34. 34.
    Zacharowski K, Zacharowski P, Reingruber S, Petzelbauer P (2006) Fibrin(ogen) and its fragments in the pathophysiology and treatment of myocardial infarction. J Mol Med (Berl) 84:469–477CrossRefGoogle Scholar
  35. 35.
    Shand JA, Menown IB, McEneaney DJ (2011) A timely diagnosis of myocardial infarction. Biomark Med 4:385–393CrossRefGoogle Scholar
  36. 36.
    Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J et al (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119:2772–2786PubMedCrossRefGoogle Scholar
  37. 37.
    Thompson WR, Nadal-Ginard B, Mahdavi V (1991) A MyoD1-independent muscle-specific enhancer controls the expression of the beta-myosin heavy chain gene in skeletal and cardiac muscle cells. J Biol Chem 266:22678–22688PubMedGoogle Scholar
  38. 38.
    Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506PubMedCrossRefGoogle Scholar
  39. 39.
    McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A (2011) Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 57:833–840PubMedCrossRefGoogle Scholar
  40. 40.
    Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301PubMedCrossRefGoogle Scholar
  41. 41.
    Meder B, Keller A, Vogel B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Just S, Borries A, Rudloff J, Leidinger P et al (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106:13–23PubMedCrossRefGoogle Scholar
  42. 42.
    Lu Y, Zhang Y, Wang N, Pan Z, Gao X, Zhang F, Zhang Y, Shan H, Luo X, Bai Y et al (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122:2378–2387PubMedCrossRefGoogle Scholar
  43. 43.
    Wang R, Li N, Zhang Y, Ran Y, Pu J (2011) Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Intern Med 50:1789–1795PubMedCrossRefGoogle Scholar
  44. 44.
    Zile MR, Mehurg SM, Arroyo JE, Stroud RE, Desantis SM, Spinale FG (2011) Relationship between the temporal profile of plasma microRNA and left ventricular remodeling in patients following myocardial infarction. Circ Cardiovasc Genet. doi: 10.1161/CIRCGENETICS.111.959841
  45. 45.
    Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159PubMedCrossRefGoogle Scholar
  46. 46.
    Tijsen AJ, Creemers EE, Moerland PD, de Windt LJ, van der Wal AC, Kok WE, Pinto YM (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039PubMedCrossRefGoogle Scholar
  47. 47.
    Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N (2010) Assessment of plasma miRNAs in congestive heart failure. Circ J 75:336–340PubMedCrossRefGoogle Scholar
  48. 48.
    Voellenkle C, van Rooij J, Cappuzzello C, Greco S, Arcelli D, Di Vito L, Melillo G, Rigolini R, Costa E, Crea F et al (2010) MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics 42:420–426PubMedCrossRefGoogle Scholar
  49. 49.
    Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, van Berkel TJ, Biessen EA (2010) The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun 394:792–797PubMedCrossRefGoogle Scholar
  50. 50.
    Neumiller JJ, To S (2011) Treating type 2 diabetes: a growing number of options. Diabetes Self Manag 28:40–42Google Scholar
  51. 51.
    Kaneto H, Matsuoka TA, Nakatani Y, Kawamori D, Miyatsuka T, Matsuhisa M, Yamasaki Y (2005) Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. J Mol Med (Berl) 83:429–439CrossRefGoogle Scholar
  52. 52.
    Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, Dong Q, Pang Z, Guan Q, Gao L et al (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48:61–69PubMedCrossRefGoogle Scholar
  53. 53.
    Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, Jeyaseelan K (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6:e22839PubMedCrossRefGoogle Scholar
  54. 54.
    Saenger AK, Christenson RH (2010) Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin Chem 56:21–33PubMedCrossRefGoogle Scholar
  55. 55.
    Carretero OA, Oparil S (2000) Essential hypertension. Part I: definition and etiology. Circulation 101:329–335PubMedCrossRefGoogle Scholar
  56. 56.
    Agnelli G, Becattini C (2010) Acute pulmonary embolism. N Engl J Med 363:266–274PubMedCrossRefGoogle Scholar
  57. 57.
    Goldhaber SZ, Elliott CG (2003) Acute pulmonary embolism: part I: epidemiology, pathophysiology, and diagnosis. Circulation 108:2726–2729PubMedCrossRefGoogle Scholar
  58. 58.
    Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA, Medscape (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477PubMedCrossRefGoogle Scholar
  59. 59.
    Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K, Kempf T, Wollert KC, Thum T (2011) Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. doi: 10.1016/j.yjmcc.2011.07.011
  60. 60.
    Koshiol J, Wang E, Zhao Y, Marincola F, Landi MT (2010) Strengths and limitations of laboratory procedures for microRNA detection. Cancer Epidemiol Biomarkers Prev 19:907–911PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Cardiology, Tongji HospitalTongji University School of MedicineShanghaiChina
  2. 2.Key Laboratory of Arrhythmias, Ministry of EducationChina (Shanghai East Hospital, Tongji University School of Medicine)ShanghaiChina
  3. 3.Department of RadiologyShanghai Third People’s Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
  4. 4.Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  5. 5.Department of Psychiatry, Tongji HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations