Advertisement

Journal of Molecular Medicine

, Volume 90, Issue 4, pp 389–400 | Cite as

SIRT1 is required for long-term growth of human mesenchymal stem cells

  • Hong-Feng Yuan
  • Chao Zhai
  • Xin-Long Yan
  • Dan-Dan Zhao
  • Jing-Xue Wang
  • Quan Zeng
  • Lin Chen
  • Xue Nan
  • Li-Juan He
  • Si-Ting Li
  • Wen Yue
  • Xue-Tao Pei
Original Article

Abstract

Human mesenchymal stem cells (MSCs) have therapeutic potential because of their ability to self-renew and differentiate into multiple tissues. However, senescence often occurs in MSCs when they are cultured in vitro and the molecular mechanisms underlying this effect remain unclear. In this study, we found that NAD-dependent protein deacetylase SIRT1 is differentially expressed in both human bone marrow-derived MSCs (B-MSCs) and adipose tissue-derived MSCs after increasing passages of cell culture. Using lentiviral shRNA we demonstrated that selective knockdown of SIRT1 in human MSCs at early passage slows down cell growth and accelerates cellular senescence. Conversely, overexpression of SIRT1 delays senescence in B-MSCs that have undergone prolonged in vitro culturing and the cells do not lose adipogenic and osteogenic potential. In addition, we found that the delayed accumulation of the protein p16 is involved in the effect of SIRT1. However, resveratrol, which has been used as an activator of SIRT1 deacetylase activity, only transiently promotes proliferation of B-MSCs. Our findings will help us understand the role of SIRT1 in the aging of normal diploid cells and may contribute to the prevention of human MSCs senescence thus benefiting MSCs-based tissue engineering and therapies.

Keywords

Mesenchymal stem cells SIRT1 Proliferation Senescence 

Notes

Acknowledgments

This work was supported by the National Foundation of Nature Science of China (NO: 31000610), the Major State Basic Research Program of China (No:2011CB64804), and the National High Technology Research and Development Program of China (No:2006AA02A107).

Author disclosure statement

The authors declare that they have no competing financial interests or others that might perceive to influence the results and discussion reported in this paper.

Supplementary material

109_2011_825_MOESM1_ESM.tif (1.1 mb)
ESM 1 (TIF 1.06 mb)
109_2011_825_MOESM2_ESM.tif (685 kb)
ESM 2 (TIF 688 mb)
109_2011_825_MOESM3_ESM.tif (90 kb)
ESM 3 (TIF 92.0 mb)
109_2011_825_MOESM4_ESM.tif (1.6 mb)
ESM 4 (TIF 1.58 mb)
109_2011_825_MOESM5_ESM.tif (1.4 mb)
ESM 5 (TIF 1.44 mb)
109_2011_825_MOESM6_ESM.tif (1.6 mb)
ESM 6 (TIF 1.57 mb)

References

  1. 1.
    Wang Y, Liang Y, Vanhoutte PM (2011) SIRT1 and AMPK in regulating mammalian senescence: a critical review and a working model. FEBS Lett 585:986–994PubMedCrossRefGoogle Scholar
  2. 2.
    Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635PubMedCrossRefGoogle Scholar
  3. 3.
    Narala SR, Allsopp RC, Wells TB, Zhang G, Prasad P, Coussens MJ, Rossi DJ, Weissman IL, Vaziri H (2008) SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. Mol Biol Cell 19:1210–1219PubMedCrossRefGoogle Scholar
  4. 4.
    Sasaki T, Maier B, Bartke A, Scrable H (2006) Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 5:413–422PubMedCrossRefGoogle Scholar
  5. 5.
    Huang J, Gan Q, Han L, Li J, Zhang H, Sun Y, Zhang Z, Tong T (2008) SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts. PLoS One 3:e1710PubMedCrossRefGoogle Scholar
  6. 6.
    Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 43:571–579PubMedCrossRefGoogle Scholar
  7. 7.
    Ota H, Eto M, Ako J, Ogawa S, Iijima K, Akishita M, Ouchi Y (2009) Sirolimus and everolimus induce endothelial cellular senescence via sirtuin 1 down-regulation: therapeutic implication of cilostazol after drug-eluting stent implantation. J Am Coll Cardiol 53:2298–2305PubMedCrossRefGoogle Scholar
  8. 8.
    Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y (2010) SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J Atheroscler Thromb 17:431–435PubMedCrossRefGoogle Scholar
  9. 9.
    Zu Y, Liu L, Lee MY, Xu C, Liang Y, Man RY, Vanhoutte PM, Wang Y (2010) SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res 106:1384–1393PubMedCrossRefGoogle Scholar
  10. 10.
    Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579–1586PubMedCrossRefGoogle Scholar
  11. 11.
    Nagaya N, Kangawa K, Itoh T, Iwase T, Murakami S, Miyahara Y, Fujii T, Uematsu M, Ohgushi H, Yamagishi M et al (2005) Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112:1128–1135PubMedCrossRefGoogle Scholar
  12. 12.
    Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14PubMedCrossRefGoogle Scholar
  13. 13.
    Ksiazek K (2009) A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res 12:105–116PubMedCrossRefGoogle Scholar
  14. 14.
    Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16:445–453PubMedCrossRefGoogle Scholar
  15. 15.
    Yuan H, Wang Z, Gao C, Chen W, Huang Q, Yee JK, Bhatia R (2010) BCR-ABL gene expression is required for its mutations in a novel KCL-22 cell culture model for acquired resistance of chronic myelogenous leukemia. J Biol Chem 285:5085–5096PubMedCrossRefGoogle Scholar
  16. 16.
    Yan XL, Fu CJ, Chen L, Qin JH, Zeng Q, Yuan HF, Nan X, Chen HX, Zhou JN, Lin YL, et al. (2011) Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via EGF/EGFR/Akt pathway. Breast Cancer Res Treat [Epub ahead of print], PMID:21584665Google Scholar
  17. 17.
    Yuan H, Zhang P, Qin L, Chen L, Shi S, Lu Y, Yan F, Bai C, Nan X, Liu D et al (2008) Overexpression of SPINDLIN1 induces cellular senescence, multinucleation and apoptosis. Gene 410(1):67–74PubMedCrossRefGoogle Scholar
  18. 18.
    Sawada R, Ito T, Tsuchiya T (2006) Changes in expression of genes related to cell proliferation in human mesenchymal stem cells during in vitro culture in comparison with cancer cells. J Artif Organs 9:179–184PubMedCrossRefGoogle Scholar
  19. 19.
    Ozturk M, Arslan-Ergul A, Bagislar S, Senturk S, Yuzugullu H (2009) Senescence and immortality in hepatocellular carcinoma. Cancer Lett 286:103–113PubMedCrossRefGoogle Scholar
  20. 20.
    Shibata KR, Aoyama T, Shima Y, Fukiage K, Otsuka S, Furu M, Kohno Y, Ito K, Fujibayashi S, Neo M et al (2007) Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells 25:2371–2382PubMedCrossRefGoogle Scholar
  21. 21.
    Alcain FJ, Villalba JM (2009) Sirtuin activators. Expert Opin Ther Pat 19:403–414PubMedCrossRefGoogle Scholar
  22. 22.
    Fischer-Posovszky P, Kukulus V, Tews D, Unterkircher T, Debatin KM, Fulda S, Wabitsch M (2010) Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr 92:5–15PubMedCrossRefGoogle Scholar
  23. 23.
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196PubMedCrossRefGoogle Scholar
  24. 24.
    Knutson MD, Leeuwenburgh C (2008) Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases. Nutr Rev 66:591–596PubMedCrossRefGoogle Scholar
  25. 25.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122PubMedCrossRefGoogle Scholar
  26. 26.
    Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716PubMedCrossRefGoogle Scholar
  27. 27.
    Sharma S, Misra CS, Arumugam S, Roy S, Shah V, Davis JA, Shirumalla RK, Ray A (2011) Antidiabetic activity of resveratrol, a known SIRT1 activator in a genetic model for type-2 diabetes. Phytother Res 25:67–73PubMedCrossRefGoogle Scholar
  28. 28.
    Smith JJ, Kenney RD, Gagne DJ, Frushour BP, Ladd W, Galonek HL, Israelian K, Song J, Razvadauskaite G, Lynch AV et al (2009) Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC Syst Biol 3:31PubMedCrossRefGoogle Scholar
  29. 29.
    Brooks CL, Gu W (2009) How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 9:123–128PubMedCrossRefGoogle Scholar
  30. 30.
    Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591PubMedCrossRefGoogle Scholar
  31. 31.
    Gan Q, Huang J, Zhou R, Niu J, Zhu X, Wang J, Zhang Z, Tong T (2008) PPAR{gamma} accelerates cellular senescence by inducing p16INK4{alpha} expression in human diploid fibroblasts. J Cell Sci 121:2235–2245PubMedCrossRefGoogle Scholar
  32. 32.
    Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342PubMedCrossRefGoogle Scholar
  33. 33.
    Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168PubMedCrossRefGoogle Scholar
  34. 34.
    Kao CL, Chen LK, Chang YL, Yung MC, Hsu CC, Chen YC, Lo WL, Chen SJ, Ku HH, Hwang SJ (2010) Resveratrol protects human endothelium from H(2)O(2)-induced oxidative stress and senescence via SirT1 activation. J Atheroscler Thromb 17:970–979PubMedCrossRefGoogle Scholar
  35. 35.
    Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B et al (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285:8340–8351PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hong-Feng Yuan
    • 1
  • Chao Zhai
    • 1
  • Xin-Long Yan
    • 1
  • Dan-Dan Zhao
    • 2
  • Jing-Xue Wang
    • 1
  • Quan Zeng
    • 1
  • Lin Chen
    • 1
  • Xue Nan
    • 1
  • Li-Juan He
    • 1
  • Si-Ting Li
    • 1
  • Wen Yue
    • 1
  • Xue-Tao Pei
    • 1
  1. 1.Stem Cell and Regeneration Medicine LabBeijing Institute of Transfusion MedicineBeijingChina
  2. 2.Department of HematologyThe First Affiliated Hospital of PLA General HospitalBeijingChina

Personalised recommendations