Journal of Molecular Medicine

, Volume 90, Issue 2, pp 149–161 | Cite as

Modulation of anthracycline-induced cytotoxicity by targeting the prenylated proteome in myeloid leukemia cells

  • Michael A. Morgan
  • Fredrick O. Onono
  • H. Peter Spielmann
  • Thangaiah Subramanian
  • Michaela Scherr
  • Letizia Venturini
  • Iris Dallmann
  • Arnold Ganser
  • Christoph W. M. Reuter
Original Article


Deregulation of Ras/ERK signaling in myeloid leukemias makes this pathway an interesting target for drug development. Myeloid leukemia cell lines were screened for idarubicin-induced apoptosis, cell-cycle progression, cell-cycle-dependent MAP kinase kinase (MEK-1/2) activation, and Top2 expression. Cell-cycle-dependent activation of MEK/ERK signaling was blocked using farnesyltransferase inhibitor (FTI) BMS-214,662 and dual prenyltransferase inhibitor (DPI) L-778,123 to disrupt Ras signaling. Idarubicin caused a G2/M cell-cycle arrest characterized by elevated diphosphorylated MEK-1/2 and Top2α expression levels. The FTI/DPIs elicited distinct effects on Ras signaling, protein prenylation, cell cycling and apoptosis. Combining these FTI/DPIs with idarubicin synergistically inhibited proliferation of leukemia cell lines, but the L-778,123+idarubicin combination exhibited synergistic growth inhibition over a greater range of drug concentrations. Interestingly, combined FTI/DPI treatment synergistically inhibited cell proliferation, induced apoptosis and nearly completely blocked protein prenylation. Inhibition of K-Ras expression by RNA interference or blockade of its post-translational prenylation led to increased BMS-214,662-induced apoptosis. Our results suggest that nearly complete inhibition of protein prenylation using an FTI + DPI combination is the most effective method to induce apoptosis and to block anthracycline-induced activation of ERK signaling.


ERK signaling Topoisomerase Leukemia 



This work was supported in part by grants to C.R. from the Deutsche Krebshilfe and the José Carreras Foundation (DJCLS R 05/21 and DJCLS R 07/32f). We would like to thank Tania Bunke for excellent technical support and to acknowledge the assistance of the Cell Sorting Core Facility of the Hannover Medical School, which is supported in part by Braukmann-Wittenberg-Herz-Stiftung and Deutsche Forschungsgemeinschaft.


The authors declare no conflict of interests related to this study.


  1. 1.
    Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9:327–337PubMedCrossRefGoogle Scholar
  2. 2.
    Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350PubMedCrossRefGoogle Scholar
  3. 3.
    Sugimoto K, Yamada K, Egashira M, Yazaki Y, Hirai H, Kikuchi A, Oshimi K (1998) Temporal and spatial distribution of DNA topoisomerase II alters during proliferation, differentiation, and apoptosis in HL-60 cells. Blood 91:1407–1417PubMedGoogle Scholar
  4. 4.
    Lohri A, van Hille B, Reuter J, Tichelli A, Herrmann R (1997) mRNA expression, measured by quantitative reverse transcriptase polymerase chain reaction, of five putative drug resistance parameters, in normal and leukaemic peripheral blood and bone marrow. Acta Haematol 98:1–7PubMedCrossRefGoogle Scholar
  5. 5.
    Towatari M, Adachi K, Marunouchi T, Saito H (1998) Evidence for a critical role of DNA topoisomerase II alpha in drug sensitivity revealed by inducible antisense RNA in a human leukaemia cell line. Br J Haematol 101:548–551PubMedCrossRefGoogle Scholar
  6. 6.
    Chen G, Templeton D, Suttle DP, Stacey DW (1999) Ras stimulates DNA topoisomerase II alpha through MEK: a link between oncogenic signaling and a therapeutic target. Oncogene 18:7149–7160PubMedCrossRefGoogle Scholar
  7. 7.
    Chikamori K, Grozav AG, Kozuki T, Grabowski D, Ganapathi R, Ganapathi MK (2010) DNA topoisomerase II enzymes as molecular targets for cancer chemotherapy. Curr Cancer Drug Targets 10:758–771PubMedCrossRefGoogle Scholar
  8. 8.
    Shapiro PS, Whalen AM, Tolwinski NS, Wilsbacher J, Froelich-Ammon SJ, Garcia M, Osheroff N, Ahn NG (1999) Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol Cell Biol 19:3551–3560PubMedGoogle Scholar
  9. 9.
    Stacey DW, Hitomi M, Chen G (2000) Influence of cell cycle and oncogene activity upon topoisomerase IIalpha expression and drug toxicity. Mol Cell Biol 20:9127–9137PubMedCrossRefGoogle Scholar
  10. 10.
    Morgan MA, Dolp O, Reuter CW (2001) Cell-Cycle-dependent activation of MAP kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 97:1823–1834PubMedCrossRefGoogle Scholar
  11. 11.
    Morgan MA, Ganser A, Reuter CWM (2007) Targeting the RAS signaling pathway in malignant hematologic diseases. Curr Drug Targets 8:217–2135PubMedCrossRefGoogle Scholar
  12. 12.
    Karp JE, Smith BD, Gojo I, Lancet JE, Greer J, Klein M, Morris L, Levis MJ, Gore SD, Wright JJ, Garrett-Mayer E (2008) Phase II trial of tipifarnib as maintenance therapy in first complete remission in adults with acute myelogenous leukemia and poor-risk features. Clin Cancer Res 14:3077–3082PubMedCrossRefGoogle Scholar
  13. 13.
    Karp JE, Flatten K, Feldman EJ, Greer JM, Loegering DA, Ricklis RM, Morris LE, Ritchie E, Smith BD, Ironside V, Talbott T, Roboz G, Le SB, Meng XW, Schneider PA, Dai NT, Adjei AA, Gore SD, Levis MJ, Wright JJ, Garrett-Mayer E, Kaufmann SH (2009) Active oral regimen for elderly adults with newly diagnosed acute myelogenous leukemia: a preclinical and phase 1 trial of the farnesyltransferase inhibitor tipifarnib (R115777, Zarnestra) combined with etoposide. Blood 113:4841–4852PubMedCrossRefGoogle Scholar
  14. 14.
    Marcus AI, Zhou J, O’Brate A, Hamel E, Wong J, Nivens M, El-Naggar A, Yao TP, Khuri FR, Giannakakou P (2005) The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase. Cancer Res 65:3883–3893PubMedCrossRefGoogle Scholar
  15. 15.
    Moasser MM, Sepp-Lorenzino L, Kohl NE, Oliff A, Balog A, Su DS, Danishefsky SJ, Rosen N (1998) Farnesyl transferase inhibitors cause enhanced mitotic sensitivity to taxol and epothilones. Proc Natl Acad Sci USA 95:1369–1374PubMedCrossRefGoogle Scholar
  16. 16.
    Wang EJ, Johnson WW (2003) The farnesyl protein transferase inhibitor lonafarnib (SCH66336) is an inhibitor of multidrug resistance proteins 1 and 2. Chemotherapy 49:303–308PubMedCrossRefGoogle Scholar
  17. 17.
    Dombret H, Gardin C (2009) An old AML drug revisited. N Engl J Med 361:1301–1303PubMedCrossRefGoogle Scholar
  18. 18.
    Onono FO, Morgan MA, Spielmann HP, Andres DA, Subramanian T, Ganser A, Reuter CW (2010) A tagging-via-substrate approach to elucidate the farnesylated proteome using two-dimensional electrophoresis (2DE) coupled with Western blotting. Mol Cell Proteomics 9:742–751PubMedCrossRefGoogle Scholar
  19. 19.
    Krauter J, Hoellge W, Wattjes MP, Nagel S, Heidenreich O, Bunjes D, Ganser A, Heil G (2001) Detection and quantification of CBFB/MYH11 fusion transcripts in patients with inv(16)-positive acute myeloblastic leukemia by real-time RT-PCR. Genes Chromosomes Cancer 30:342–348PubMedCrossRefGoogle Scholar
  20. 20.
    Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  21. 21.
    Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101:1566–1569PubMedCrossRefGoogle Scholar
  22. 22.
    Réjiba S, Wack S, Aprahamian M, Hajri A (2007) K-ras oncogene silencing strategy reduces tumor growth and enhances gemcitabine chemotherapy efficacy for pancreatic cancer treatment. Cancer Sci 98:1128–1136PubMedCrossRefGoogle Scholar
  23. 23.
    Wang W, Wang CY, Dong JH, Chen X, Zhang M, Zhao G (2005) Identification of effective siRNA against K-ras in human pancreatic cancer cell line MiaPaCa-2 by siRNA expression cassette. World J Gastroenterol 11:2026–2031PubMedGoogle Scholar
  24. 24.
    Park H, Cox D (2009) Cdc42 regulates Fc gamma receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott–Aldrich syndrome protein (WASP) and neural-WASP. Mol Biol Cell 20:4500–4508PubMedCrossRefGoogle Scholar
  25. 25.
    Duan L, Chen G, Virmani S, Ying G, Raja SM, Chung BM, Rainey MA, Dimri M, Ortega-Cava CF, Zhao X, Clubb RJ, Tu C, Reddi AL, Naramura M, Band V, Band H (2010) Distinct roles for Rho versus Rac/Cdc42 GTPases downstream of Vav2 in regulating mammary epithelial acinar architecture. J Biol Chem 285:1555–1568PubMedCrossRefGoogle Scholar
  26. 26.
    Rose WC, Lee FY, Fairchild CR, Lynch M, Monticello T, Kramer RA, Manne V (2001) Preclinical antitumor activity of BMS-214662, a highly apoptotic and novel farnesyltransferase inhibitor. Cancer Res 61:7507–7517PubMedGoogle Scholar
  27. 27.
    Huber HE, Robinson RG, Watkins A, Nahas DD, Abrams MT, Buser CA, Lobell RB, Patrick D, Anthony NJ, Dinsmore CJ, Graham SL, Hartman GD, Lumma WC, Williams TM, Heimbrook DC (2001) Anions modulate the potency of geranylgeranyl-protein transferase I inhibitors. J Biol Chem 276:24457–24465PubMedCrossRefGoogle Scholar
  28. 28.
    Lobell RB, Omer CA, Abrams MT, Bhimnathwala HG, Brucker MJ, Buser CA, Davide JP, deSolms SJ, Dinsmore CJ, Ellis-Hutchings MS, Kral AM, Liu D, Lumma WC, Machotka SV, Rands E, Williams TM, Graham SL, Hartman GD, Oliff AI, Heimbrook DC, Kohl NE (2001) Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res 61:8758–8768PubMedGoogle Scholar
  29. 29.
    Bardeleben RV, Dunkern T, Kaina B, Fritz G (2002) The HMG-CoA reductase inhibitor lovastatin protects cells from the antineoplastic drugs doxorubicin and etoposide. Int J Mol Med 10:473–479PubMedGoogle Scholar
  30. 30.
    Damrot J, Nübel T, Epe B, Roos WP, Kaina B, Fritz G (2006) Lovastatin protects human endothelial cells from the genotoxic and cytotoxic effects of the anticancer drugs doxorubicin and etoposide. Br J Pharmacol 149:988–997PubMedCrossRefGoogle Scholar
  31. 31.
    Carlson KM, Gruber A, Liliemark E, Larsson R, Nordenskjöld M (1999) Characterization of drug-resistant cell lines by comparative genomic hybridization. Cancer Genet Cytogenet 111:32–36PubMedCrossRefGoogle Scholar
  32. 32.
    Du W, Lebowitz PF, Prendergast GC (1999) Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol Cell Biol 19:1831–1840PubMedGoogle Scholar
  33. 33.
    Basso AD, Kirschmeier P, Bishop WR (2006) Lipid posttranslational modifications. Farnesyl transferase inhibitors. J Lipid Res 47:15–31PubMedCrossRefGoogle Scholar
  34. 34.
    Keller JW, Haigis KM, Franklin JL, Whitehead RH, Jacks T, Coffey RJ (2007) Oncogenic K-RAS subverts the antiapoptotic role of N-RAS and alters modulation of the N-RAS:gelsolin complex. Oncogene 26:3051–3059PubMedCrossRefGoogle Scholar
  35. 35.
    Escandell JM, Kaler P, Recio MC, Sasazuki T, Shirasawa S, Augenlicht L, Ríos JL, Klampfer L (2008) Activated kRas protects colon cancer cells from cucurbitacin-induced apoptosis: the role of p53 and p21. Biochem Pharmacol 76:198–207PubMedCrossRefGoogle Scholar
  36. 36.
    Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, Niwa-Kawakita M, Sweet-Cordero A, Sebolt-Leopold J, Shannon KM, Settleman J, Giovannini M, Jacks T (2008) Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 40:600–608PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang J, Wang J, Liu Y, Sidik H, Young KH, Lodish HF, Fleming MD (2009) Oncogenic Kras-induced leukemogeneis: hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood 113:1304–1314PubMedCrossRefGoogle Scholar
  38. 38.
    Copland M, Pellicano F, Richmond L, Allan EK, Hamilton A, Lee FY, Weinmann R, Holyoake TL (2008) BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood 111:2843–2853PubMedCrossRefGoogle Scholar
  39. 39.
    Pellicano F, Copland M, Jorgensen HG, Mountford J, Leber B, Holyoake TL (2009) BMS-214662 induces mitochondrial apoptosis in chronic myeloid leukemia (CML) stem/progenitor cells, including CD34 + 38- cells, through activation of protein kinase Cbeta. Blood 114:4186–4196PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Michael A. Morgan
    • 1
  • Fredrick O. Onono
    • 1
  • H. Peter Spielmann
    • 2
    • 3
    • 4
  • Thangaiah Subramanian
    • 2
  • Michaela Scherr
    • 1
  • Letizia Venturini
    • 1
  • Iris Dallmann
    • 1
  • Arnold Ganser
    • 1
  • Christoph W. M. Reuter
    • 1
  1. 1.Department of Hematology, Hemostasis, Oncology and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
  2. 2.Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonUSA
  3. 3.Department of ChemistryUniversity of KentuckyLexingtonUSA
  4. 4.Kentucky Center for Structural BiologyUniversity of KentuckyLexingtonUSA

Personalised recommendations