Journal of Molecular Medicine

, 89:1137 | Cite as

Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo

  • Zuzana Zachar
  • James Marecek
  • Claudia Maturo
  • Sunita Gupta
  • Shawn D. Stuart
  • Katy Howell
  • Alexandra Schauble
  • Joanna Lem
  • Arin Piramzadian
  • Sameer Karnik
  • King Lee
  • Robert Rodriguez
  • Robert Shorr
  • Paul M. Bingham
Oiginal Article

Abstract

We report the analysis of CPI-613, the first member of a large set of analogs of lipoic acid (lipoate) we have investigated as potential anticancer agents. CPI-613 strongly disrupts mitochondrial metabolism, with selectivity for tumor cells in culture. This mitochondrial disruption includes activation of the well-characterized, lipoate-responsive regulatory phosphorylation of the E1α pyruvate dehydrogenase (PDH) subunit. This phosphorylation inactivates flux of glycolysis-derived carbon through this enzyme complex and implicates the PDH regulatory kinases (PDKs) as a possible drug target. Supporting this hypothesis, RNAi knockdown of the PDK protein levels substantially attenuates CPI-613 cancer cell killing. In both cell culture and in vivo tumor environments, the observed strong mitochondrial metabolic disruption is expected to significantly compromise cell survival. Consistent with this prediction, CPI-613 disruption of tumor mitochondrial metabolism is followed by efficient commitment to cell death by multiple, apparently redundant pathways, including apoptosis, in all tested cancer cell lines. Further, CPI-613 shows strong antitumor activity in vivo against human non-small cell lung and pancreatic cancers in xenograft models with low side-effect toxicity.

Keywords

Cancer Metabolism Mitochondria Lipoic acid PDH 

Supplementary material

109_2011_785_MOESM1_ESM.pdf (186 kb)
ESM 1(PDF 186 kb)
ESM 2

(MOV 1641 kb)

ESM 3

(MOV 2437 kb)

References

  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  2. 2.
    Baggetto LG (1992) Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74:959–974PubMedCrossRefGoogle Scholar
  3. 3.
    Christofk HR, Vander Heiden MG, Harris MH, Ramamathan A, Gerszten RE, Wei R, Flemming MD, Schreiber SL, Cantley LD (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–234PubMedCrossRefGoogle Scholar
  4. 4.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20PubMedCrossRefGoogle Scholar
  5. 5.
    DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61PubMedCrossRefGoogle Scholar
  6. 6.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRefGoogle Scholar
  7. 7.
    Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Sem Cancer Biol 19:12–16CrossRefGoogle Scholar
  8. 8.
    Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95PubMedCrossRefGoogle Scholar
  9. 9.
    Garrett R, Grisham CM (2007) Biochemistry. Thomson Brooks, SouthbankGoogle Scholar
  10. 10.
    Kikuchi G, Motokawa Y, Yoshida T, Hiraga K (2008) Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proceedings of the Japan Academy Series B-Physical and Biological Sciences 84:246–263CrossRefGoogle Scholar
  11. 11.
    Yeaman SJ (1989) The 2-oxo acid dehydrogenase complexes—Recent advances. Biochem J 257:625–632PubMedGoogle Scholar
  12. 12.
    Roche TE, Baker JC, Yan YH, Hiromasa R, Gong XM, Peng T, Dong JC, Turhan A, Sa K (2001) Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucl Acid Res and Mol Biol 70:33–75CrossRefGoogle Scholar
  13. 13.
    Bunik VI (2003) 2-oxo acid dehydrogenase complexes in redox regulation: Role of the lipoate residues and thioredoxin. Euro J Biochem 270:1036–1042CrossRefGoogle Scholar
  14. 14.
    Roche TE, Hiromasa Y, Turkan A, Gong X, Peng T, Yan X, Kasten SA, Bao H, Dong J (2003) Essential roles of lipoyl domains in the activated function and control of pyruvate dehydrogenase kinases and phosphatase isoform 1. Euro J Biochem 270:1050–1056CrossRefGoogle Scholar
  15. 15.
    Sugden MC, Holness MJ (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol 284:E855–E862Google Scholar
  16. 16.
    Roche TE, Hiromasa Y (2007) Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci 64:830–849PubMedCrossRefGoogle Scholar
  17. 17.
    Koukourakis MI, Giatromanolaki A, Giatromanolaki A, Sivridis E, Gatter KC, Harris AL (2005) Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia 7:1–6PubMedCrossRefGoogle Scholar
  18. 18.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185PubMedCrossRefGoogle Scholar
  19. 19.
    Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197PubMedCrossRefGoogle Scholar
  20. 20.
    Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713PubMedCrossRefGoogle Scholar
  21. 21.
    McFate T, Mohyeldin A, Mohyeldin A, Lu H, Thakar J, Henriquez J, Halim ND, Wu H, Schell MJ, Tsang TM, Teahan O, Zhou S, Califano JA, Jeoun NH, Harris RA, Verma A (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708PubMedCrossRefGoogle Scholar
  22. 22.
    Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ (2008) Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 283:28106–28114PubMedCrossRefGoogle Scholar
  23. 23.
    Schafer ZT, Grassian AR, Song LL, Jiang ZY, Gerhart-Hines Z, Irie HY, Gao SZ, Puigserver P, Brugge JS (2009) Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461:109–114PubMedCrossRefGoogle Scholar
  24. 24.
    Takeda Y, Perez-Pinzon MA, Ginsberg MD, Sick TJ (2004) Mitochondria consume energy and compromise cellular membrane potential by reversing ATP synthetase activity during focal ischemia in rats. J Cereb Blood Flow Metab 24:986–992Google Scholar
  25. 25.
    de Bruin EC, Mederna JP (2008) Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 34:737–749PubMedCrossRefGoogle Scholar
  26. 26.
    Nagley P, Higgins GC, Higgins GC, Atkin JD, Beart PM (2010) Multifaceted deaths orchestrated by mitochondria in neurons. Biochim Biophys Acta 1802:167–185PubMedGoogle Scholar
  27. 27.
    Skulachev VP (2004) Wages of Fear: transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim Biophys Acta 1658:141–147PubMedCrossRefGoogle Scholar
  28. 28.
    Cuezva JM, Ortega AD, Willers I, Sanchez-Cenizo L, Aldea M, Sanchez-Arago M (2009) The tumor suppressor function of mitochondria: Translation into the clinics. Biochim Biophys Acta 1792:1145–1158PubMedGoogle Scholar
  29. 29.
    Tennant DA, Duran RV, Gottlieb E (2010) Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 10:267–277PubMedCrossRefGoogle Scholar
  30. 30.
    Bonnet S, Archer SL, Allalunic-Turner J, Harmony A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Mechelas ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51PubMedCrossRefGoogle Scholar
  31. 31.
    Ikediobi ON, Davies H, Bignell G, Edkins S, Stevens C, O'Meara S, Santarius R, Avis T, Barthrope S, Brackenbury L, Buck G, Butler A, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Hunter C, Jenkinson A, Jones D, Kosmidou V, Lugg R, Menzies A, Mironeneko T, Parker A, Perry J, Raine K, Richardson D, Shepherd R, Small A, Smith R, Soloman H, Stephens P, Teague J, Tofts C, Varain J, Webb T, West S, Widaa S, Yates A, Reinhoid W, Weinstein JN, Stratton MR, Futreal PA, Wooster R (2006) Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther 5:2606–2612PubMedCrossRefGoogle Scholar
  32. 32.
    Rodrigues AR, Rowan A, Smith MEF, Kerr IB, Bodmer WF, Gannon JV, Lane DP (1990) p53 mutations in colorectal cancer. Proc Natl Acad Sci, USA 87:7555–7559PubMedCrossRefGoogle Scholar
  33. 33.
    Augenlicht LH, Wadler S, Corner G, Richards C, Multani AS, Pathak S, Benson A, Haller D, Heerdt BG (1997) Low-level c-myc amplification in human colonic carcinoma cell lines and tumors: A frequent p53-independent mutation associated with improved outcome in randomized multi-institutional trial. Cancer Res 57:1769–1775PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Zuzana Zachar
    • 1
    • 3
    • 4
  • James Marecek
    • 2
  • Claudia Maturo
    • 3
    • 4
  • Sunita Gupta
    • 3
    • 4
  • Shawn D. Stuart
    • 1
  • Katy Howell
    • 3
    • 4
  • Alexandra Schauble
    • 3
    • 4
  • Joanna Lem
    • 3
    • 4
  • Arin Piramzadian
    • 3
    • 4
  • Sameer Karnik
    • 3
    • 4
  • King Lee
    • 3
    • 4
  • Robert Rodriguez
    • 3
    • 4
  • Robert Shorr
    • 3
    • 4
  • Paul M. Bingham
    • 1
    • 3
    • 4
  1. 1.Department of Biochemistry and Cell BiologyStony Brook UniversityStony BrookUSA
  2. 2.Department of ChemistryStony Brook UniversityStony BrookUSA
  3. 3.Cornerstone Pharmaceuticals, IncStony BrookUSA
  4. 4.Cornerstone Pharmaceuticals, IncCranburyUSA

Personalised recommendations