Journal of Molecular Medicine

, Volume 89, Issue 8, pp 743–752 | Cite as

Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development

Review

Abstract

While G-protein-coupled receptors (GPCRs) have received considerable attention for their biological activity in a diversity of physiological functions and have become targets for therapeutic intervention in many diseases, the function of the cell adhesion subfamily of GPCRs remains poorly understood. Within this group, the family of brain angiogenesis inhibitor molecules (BAI1-3) has become increasingly appreciated for their diverse roles in biology and disease. In particular, recent findings suggest emerging roles for BAI1 in the regulation of phenomena including phagocytosis, synaptogenesis, and the inhibition of tumor growth and angiogenesis via the processing of its extracellular domain into secreted vasculostatins. Here we summarize the known biological features of the BAI proteins, including their structure, proteolysis events, and interacting partners, and their recently identified ability to regulate certain signaling pathways. Finally, we discuss the potential of the BAIs as therapeutics or targets for diseases as varied as cancer, stroke, and schizophrenia.

Keywords

Angiogenesis Brain Cancer Glioma 

References

  1. 1.
    Bjarnadottir TK, Fredriksson R, Schioth HB (2007) The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci 64:2104–2119. doi:10.1007/s00018-007-7067-1 PubMedCrossRefGoogle Scholar
  2. 2.
    de Fraipont F, Nicholson AC, Feige JJ, Van Meir EG (2001) Thrombospondins and tumor angiogenesis. Trends Mol Med 7:401–407PubMedCrossRefGoogle Scholar
  3. 3.
    Nicholson AC, Malik SB, Logsdon JM Jr, Van Meir EG (2005) Functional evolution of ADAMTS genes: evidence from analyses of phylogeny and gene organization. BMC Evol Biol 5:11–23PubMedCrossRefGoogle Scholar
  4. 4.
    Oda K, Shiratsuchi T, Nishimori H, Inazawa J, Yoshikawa H, Taketani Y, Nakamura Y, Tokino T (1999) Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BAI1. Cytogenet Cell Genet 84:75–82PubMedCrossRefGoogle Scholar
  5. 5.
    Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K, Yoshida S, Ono M, Kuwano M, Nakamura Y, Tokino T (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150PubMedCrossRefGoogle Scholar
  6. 6.
    Van Meir EG, Polverini PJ, Chazin VR, Su Huang HJ, de Tribolet N, Cavenee WK (1994) Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nat Genet 8:171–176. doi:10.1038/ng1094-171 PubMedCrossRefGoogle Scholar
  7. 7.
    Shiratsuchi T, Nishimori H, Ichise H, Nakamura Y, Tokino T (1997) Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1). Cytogenet Cell Genet 79:103–108PubMedCrossRefGoogle Scholar
  8. 8.
    Kaur B, Brat DJ, Calkins CC, Van Meir EG (2003) Brain angiogenesis inhibitor 1 is differentially expressed in normal brain and glioblastoma independently of p53 expression. Am J Pathol 162:19–27PubMedCrossRefGoogle Scholar
  9. 9.
    Valen E, Pascarella G, Chalk A, Maeda N, Kojima M, Kawazu C, Murata M, Nishiyori H, Lazarevic D, Motti D, Marstrand TT, Tang MH, Zhao X, Krogh A, Winther O, Arakawa T, Kawai J, Wells C, Daub C, Harbers M, Hayashizaki Y, Gustincich S, Sandelin A, Carninci P (2009) Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Res 19:255–265. doi:10.1101/gr.084541.108 PubMedCrossRefGoogle Scholar
  10. 10.
    Mori K, Kanemura Y, Fujikawa H, Nakano A, Ikemoto H, Ozaki I, Matsumoto T, Tamura K, Yokota M, Arita N (2002) Brain-specific angiogenesis inhibitor 1 (BAI1) is expressed in human cerebral neuronal cells. Neurosci Res 43:69–74PubMedCrossRefGoogle Scholar
  11. 11.
    Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, Klibanov AL, Mandell JW, Ravichandran KS (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434. doi:10.1038/nature06329 PubMedCrossRefGoogle Scholar
  12. 12.
    Koh JT, Lee ZH, Ahn KY, Kim JK, Bae CS, Kim HH, Kee HJ, Kim KK (2001) Characterization of mouse brain-specific angiogenesis inhibitor 1 (BAI1) and phytanoyl-CoA alpha-hydroxylase-associated protein 1, a novel BAI1-binding protein. Brain Res Mol Brain Res 87:223–237PubMedCrossRefGoogle Scholar
  13. 13.
    Kee HJ, Koh JT, Kim MY, Ahn KY, Kim JK, Bae CS, Park SS, Kim KK (2002) Expression of brain-specific angiogenesis inhibitor 2 (BAI2) in normal and ischemic brain: involvement of BAI2 in the ischemia-induced brain angiogenesis. J Cereb Blood Flow Metab 22:1054–1067. doi:10.1097/00004647-200209000-00003 PubMedCrossRefGoogle Scholar
  14. 14.
    Ito J, Ito M, Nambu H, Fujikawa T, Tanaka K, Iwaasa H, Tokita S (2009) Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6J mice. Cell Tissue Res 338:257–269. doi:10.1007/s00441-009-0859-x PubMedCrossRefGoogle Scholar
  15. 15.
    Deyev IE, Petrenko AG (2010) Regulation of CIRL-1 proteolysis and trafficking. Biochimie 92:418–422. doi:10.1016/j.biochi.2010.01.015 PubMedCrossRefGoogle Scholar
  16. 16.
    Perler FB (1998) Breaking up is easy with esters. Nat Struct Biol 5:249–252PubMedCrossRefGoogle Scholar
  17. 17.
    Perler FB, Xu MQ, Paulus H (1997) Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol 1:292–299PubMedCrossRefGoogle Scholar
  18. 18.
    Wei W, Hackmann K, Xu H, Germino G, Qian F (2007) Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem 282:21729–21737. doi:10.1074/jbc.M703218200 PubMedCrossRefGoogle Scholar
  19. 19.
    Hsiao CC, Cheng KF, Chen HY, Chou YH, Stacey M, Chang GW, Lin HH (2009) Site-specific N-glycosylation regulates the GPS auto-proteolysis of CD97. FEBS Lett 583:3285–3290. doi:10.1016/j.febslet.2009.09.001 PubMedCrossRefGoogle Scholar
  20. 20.
    Krasnoperov V, Lu Y, Buryanovsky L, Neubert TA, Ichtchenko K, Petrenko AG (2002) Post-translational proteolytic processing of the calcium-independent receptor of alpha-latrotoxin (CIRL), a natural chimera of the cell adhesion protein and the G protein-coupled receptor. Role of the G protein-coupled receptor proteolysis site (GPS) motif. J Biol Chem 277:46518–46526. doi:10.1074/jbc.M206415200 PubMedCrossRefGoogle Scholar
  21. 21.
    Fukuzawa T, Hirose S (2006) Multiple processing of Ig-Hepta/GPR116, a G protein-coupled receptor with immunoglobulin (Ig)-like repeats, and generation of EGF2-like fragment. J Biochem 140:445–452. doi:10.1093/jb/mvj170 PubMedCrossRefGoogle Scholar
  22. 22.
    Krasnoperov V, Deyev IE, Serova OV, Xu C, Lu Y, Buryanovsky L, Gabibov AG, Neubert TA, Petrenko AG (2009) Dissociation of the subunits of the calcium-independent receptor of alpha-latrotoxin as a result of two-step proteolysis. Biochemistry 48:3230–3238. doi:10.1021/bi802163p PubMedCrossRefGoogle Scholar
  23. 23.
    Sugita S, Ichtchenko K, Khvotchev M, Sudhof TC (1998) alpha-Latrotoxin receptor CIRL/latrophilin 1 (CL1) defines an unusual family of ubiquitous G-protein-linked receptors. G-protein coupling not required for triggering exocytosis. J Biol Chem 273:32715–32724PubMedCrossRefGoogle Scholar
  24. 24.
    Chang GW, Stacey M, Kwakkenbos MJ, Hamann J, Gordon S, Lin HH (2003) Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif. FEBS Lett 547:145–150PubMedCrossRefGoogle Scholar
  25. 25.
    Lin HH, Chang GW, Davies JQ, Stacey M, Harris J, Gordon S (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832. doi:10.1074/jbc.M402974200 PubMedCrossRefGoogle Scholar
  26. 26.
    Huang Y, Fan J, Yang J, Zhu GZ (2008) Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells. Mol Cell Biochem 308:133–139. doi:10.1007/s11010-007-9621-4 PubMedCrossRefGoogle Scholar
  27. 27.
    Gray JX, Haino M, Roth MJ, Maguire JE, Jensen PN, Yarme A, Stetler-Stevenson MA, Siebenlist U, Kelly K (1996) CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J Immunol 157:5438–5447PubMedGoogle Scholar
  28. 28.
    Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T (1999) Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98:585–595PubMedCrossRefGoogle Scholar
  29. 29.
    Obermann H, Samalecos A, Osterhoff C, Schroder B, Heller R, Kirchhoff C (2003) HE6, a two-subunit heptahelical receptor associated with apical membranes of efferent and epididymal duct epithelia. Mol Reprod Dev 64:13–26. doi:10.1002/mrd.10220 PubMedCrossRefGoogle Scholar
  30. 30.
    Jin Z, Tietjen I, Bu L, Liu-Yesucevitz L, Gaur SK, Walsh CA, Piao X (2007) Disease-associated mutations affect GPR56 protein trafficking and cell surface expression. Hum Mol Genet 16:1972–1985. doi:10.1093/hmg/ddm144 PubMedCrossRefGoogle Scholar
  31. 31.
    Volynski KE, Silva JP, Lelianova VG, Atiqur Rahman M, Hopkins C, Ushkaryov YA (2004) Latrophilin fragments behave as independent proteins that associate and signal on binding of LTX(N4C). EMBO J 23:4423–4433. doi:10.1038/sj.emboj.7600443 PubMedCrossRefGoogle Scholar
  32. 32.
    Kaur B, Brat DJ, Devi NS, Van Meir EG (2005) Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24:3632–3642. doi:10.1038/sj.onc.1208317 PubMedCrossRefGoogle Scholar
  33. 33.
    Okajima D, Kudo G, Yokota H (2010) Brain-specific angiogenesis inhibitor 2 (BAI2) may be activated by proteolytic processing. J Recept Signal Transduct Res 30:143–153. doi:10.3109/10799891003671139 PubMedCrossRefGoogle Scholar
  34. 34.
    Kaur B, Cork SM, Sandberg EM, Devi NS, Zhang Z, Klenotic PA, Febbraio M, Shim H, Mao H, Tucker-Burden C, Silverstein RL, Brat DJ, Olson JJ, Van Meir EG (2009) Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res 69:1212–1220. doi:10.1158/0008-5472.CAN-08-1166 PubMedCrossRefGoogle Scholar
  35. 35.
    Febbraio M, Silverstein RL (2007) CD36: implications in cardiovascular disease. Int J Biochem Cell Biol 39:2012–2030. doi:10.1016/j.biocel.2007.03.012 PubMedCrossRefGoogle Scholar
  36. 36.
    Febbraio M, Hajjar DP, Silverstein RL (2001) CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 108:785–791. doi:10.1172/JCI14006 PubMedGoogle Scholar
  37. 37.
    Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48. doi:10.1038/71517 PubMedCrossRefGoogle Scholar
  38. 38.
    Jimenez B, Volpert OV, Reiher F, Chang L, Munoz A, Karin M, Bouck N (2001) c-Jun N-terminal kinase activation is required for the inhibition of neovascularization by thrombospondin-1. Oncogene 20:3443–3448. doi:10.1038/sj.onc.1204464 PubMedCrossRefGoogle Scholar
  39. 39.
    Gupta K, Gupta P, Wild R, Ramakrishnan S, Hebbel RP (1999) Binding and displacement of vascular endothelial growth factor (VEGF) by thrombospondin: effect on human microvascular endothelial cell proliferation and angiogenesis. Angiogenesis 3:147–158PubMedCrossRefGoogle Scholar
  40. 40.
    Vogel T, Guo NH, Krutzsch HC, Blake DA, Hartman J, Mendelovitz S, Panet A, Roberts DD (1993) Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J Cell Biochem 53:74–84. doi:10.1002/jcb.240530109 PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang X, Lawler J (2007) Thrombospondin-based antiangiogenic therapy. Microvasc Res 74:90–99. doi:10.1016/j.mvr.2007.04.007 PubMedCrossRefGoogle Scholar
  42. 42.
    Klenotic PA, Huang P, Palomo J, Kaur B, Van Meir EG, Vogelbaum MA, Febbraio M, Gladson CL, Silverstein RL (2010) Histidine-rich glycoprotein modulates the anti-angiogenic effects of vasculostatin. Am J Pathol 176:2039–2050. doi:10.2353/ajpath.2010.090782 PubMedCrossRefGoogle Scholar
  43. 43.
    Bolliger MF, Martinelli DC, Sudhof TC (2011) The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proc Natl Acad Sci U S A 108:2534–2539. doi:10.1073/pnas.1019577108 PubMedCrossRefGoogle Scholar
  44. 44.
    Duckert P, Brunak S, Blom N (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Des Sel 17:107–112. doi:10.1093/protein/gzh013 PubMedCrossRefGoogle Scholar
  45. 45.
    Moriguchi T, Haraguchi K, Ueda N, Okada M, Furuya T, Akiyama T (2004) DREG, a developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage sites. Genes Cells 9:549–560. doi:10.1111/j.1356-9597.2004.00743.x PubMedCrossRefGoogle Scholar
  46. 46.
    Shiratsuchi T, Futamura M, Oda K, Nishimori H, Nakamura Y, Tokino T (1998) Cloning and characterization of BAI-associated protein 1: a PDZ domain-containing protein that interacts with BAI1. Biochem Biophys Res Commun 247:597–604. doi:10.1006/bbrc.1998.8603 PubMedCrossRefGoogle Scholar
  47. 47.
    Fujiwara T, Mammoto A, Kim Y, Takai Y (2000) Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem Biophys Res Commun 271:626–629. doi:10.1006/bbrc.2000.2671 PubMedCrossRefGoogle Scholar
  48. 48.
    Shiratsuchi T, Oda K, Nishimori H, Suzuki M, Takahashi E, Tokino T, Nakamura Y (1998) Cloning and characterization of BAP3 (BAI-associated protein 3), a C2 domain-containing protein that interacts with BAI1. Biochem Biophys Res Commun 251:158–165. doi:10.1006/bbrc.1998.9408 PubMedCrossRefGoogle Scholar
  49. 49.
    Lim IA, Hall DD, Hall JQ (2002) Selectivity and promiscuity of the first and second PDZ domains of PSD-95 and synapse-associated protein 102. J Biol Chem 277: 21691–21711CrossRefGoogle Scholar
  50. 50.
    Jeong BC, Kim MY, Lee JH, Kee HJ, Kho DH, Han KE, Qian YR, Kim JK, Kim KK (2006) Brain-specific angiogenesis inhibitor 2 regulates VEGF through GABP that acts as a transcriptional repressor. FEBS Lett 580:669–676. doi:10.1016/j.febslet.2005.12.086 PubMedCrossRefGoogle Scholar
  51. 51.
    Hayashi T, Noshita N, Sugawara T, Chan PH (2003) Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab 23:166–180PubMedCrossRefGoogle Scholar
  52. 52.
    Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851. doi:10.1172/JCI17977 PubMedGoogle Scholar
  53. 53.
    Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959. doi:10.1038/nature04481 PubMedCrossRefGoogle Scholar
  54. 54.
    Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201. doi:10.1016/j.neuron.2008.01.003 PubMedCrossRefGoogle Scholar
  55. 55.
    Hatanaka H, Oshika Y, Abe Y, Yoshida Y, Hashimoto T, Handa A, Kijima H, Yamazaki H, Inoue H, Ueyama Y, Nakamura M (2000) Vascularization is decreased in pulmonary adenocarcinoma expressing brain-specific angiogenesis inhibitor 1 (BAI1). Int J Mol Med 5:181–183PubMedGoogle Scholar
  56. 56.
    Fukushima Y, Oshika Y, Tsuchida T, Tokunaga T, Hatanaka H, Kijima H, Yamazaki H, Ueyama Y, Tamaoki N, Nakamura M (1998) Brain-specific angiogenesis inhibitor 1 expression is inversely correlated with vascularity and distant metastasis of colorectal cancer. Int J Oncol 13:967–970PubMedGoogle Scholar
  57. 57.
    Miyamoto N, Yamamoto H, Taniguchi H, Miyamoto C, Oki M, Adachi Y, Imai K, Shinomura Y (2007) Differential expression of angiogenesis-related genes in human gastric cancers with and those without high-frequency microsatellite instability. Cancer Lett 254:42–53. doi:10.1016/j.canlet.2007.02.004 PubMedCrossRefGoogle Scholar
  58. 58.
    Yoshida Y, Oshika Y, Fukushima Y, Tokunaga T, Hatanaka H, Kijima H, Yamazaki H, Ueyama Y, Tamaoki N, Miura S, Nakamura M (1999) Expression of angiostatic factors in colorectal cancer. Int J Oncol 15:1221–1225PubMedGoogle Scholar
  59. 59.
    Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J, Moorhead M, Chaudhuri S, Tomsho LP, Peters BA, Pujara K, Cordes S, Davis DP, Carlton VE, Yuan W, Li L, Wang W, Eigenbrot C, Kaminker JS, Eberhard DA, Waring P, Schuster SC, Modrusan Z, Zhang Z, Stokoe D, de Sauvage FJ, Faham M, Seshagiri S (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873. doi:10.1038/nature09208 PubMedCrossRefGoogle Scholar
  60. 60.
    Lee JH, Koh JT, Shin BA, Ahn KY, Roh JH, Kim YJ, Kim KK (2001) Comparative study of angiostatic and anti-invasive gene expressions as prognostic factors in gastric cancer. Int J Oncol 18:355–361PubMedGoogle Scholar
  61. 61.
    Nam DH, Park K, Suh YL, Kim JH (2004) Expression of VEGF and brain specific angiogenesis inhibitor-1 in glioblastoma: prognostic significance. Oncol Rep 11:863–869PubMedGoogle Scholar
  62. 62.
    Kudo S, Konda R, Obara W, Kudo D, Tani K, Nakamura Y, Fujioka T (2007) Inhibition of tumor growth through suppression of angiogenesis by brain-specific angiogenesis inhibitor 1 gene transfer in murine renal cell carcinoma. Oncol Rep 18:785–791PubMedGoogle Scholar
  63. 63.
    Xiao XR, Kang XX, Zhao JZ (2006) Therapeutic effect of brain-specific angiogenesis inhibitor 1 on glioblastoma: an animal experiment. Zhonghua Yi Xue Za Zhi 86:1342–1346PubMedGoogle Scholar
  64. 64.
    Yoon KC, Ahn KY, Lee JH, Chun BJ, Park SW, Seo MS, Park YG, Kim KK (2005) Lipid-mediated delivery of brain-specific angiogenesis inhibitor 1 gene reduces corneal neovascularization in an in vivo rabbit model. Gene Ther 12:617–624. doi:10.1038/sj.gt.3302442 PubMedCrossRefGoogle Scholar
  65. 65.
    DeRosse P, Lencz T, Burdick KE, Siris SG, Kane JM, Malhotra AK (2008) The genetics of symptom-based phenotypes: toward a molecular classification of schizophrenia. Schizophr Bull 34:1047–1053. doi:10.1093/schbul/sbn076 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of NeurosurgeryEmory University School of MedicineAtlantaUSA
  2. 2.Department of Hematology and Medical OncologyEmory University School of MedicineAtlantaUSA
  3. 3.Winship Cancer InstituteEmory UniversityAtlantaUSA

Personalised recommendations