Is CaMKII a link between inflammation and hypertrophy in heart?


Myocardial infarction is a major cause of morbidity and mortality in the developing and developed world. Although current interventions have been successful in prolonging life, they are inadequate because mortality is still high among MI patients. The multifunctional Ca2+/calmodulin-dependent protein kinase (CaMKII) plays a key role in the structure and contractility of the myocardium. CaMKII activity is increased in MI hearts and CaMKII promotes cardiac hypertrophy and inflammation, processes consistently activated by myocardial injury. Hypertrophy and inflammation are also related to neurohumoral and redox signaling which uncouple CaMKII activation from Ca2+/calmodulin dependence. Thus, CaMKII may act as a nodal point for integrating hypertrophic and inflammatory signaling in myocardium.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1


  1. 1.

    Krum H, Abraham WT (2009) Heart failure. Lancet 373:941–955

  2. 2.

    Grimm M, Brown JH (2010) Beta-adrenergic receptor signaling in the heart: role of CaMKII. J Mol Cell Cardiol 48:322–330

  3. 3.

    Maier LS, Bers DM (2007) Role of Ca2+/Calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res 73:631–640

  4. 4.

    Singh MV, Kapoun A, Higgins L, Kutschke W, Thurman JM, Zhang R, Singh M, Yang J, Guan X, Lowe JS et al (2009) Ca2+/Calmodulin-dependent kinase II triggers cell membrane injury by inducing complement factor B gene expression in the mouse heart. J Clin Invest 119:986–996

  5. 5.

    Sossalla S, Fluschnik N, Schotola H, Ort KR, Neef S, Schulte T, Wittkopper K, Renner A, Schmitto JD, Gummert J et al (2010) Inhibition of elevated Ca2+/Calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res 107:1150–1161

  6. 6.

    Kirchhefer U, Schmitz W, Scholz H, Neumann J (1999) Activity of cAMP-dependent protein kinase and Ca2+/Calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res 42:254–261

  7. 7.

    Erickson JR, M-lA J, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O'Donnell SE, Aykin-Burns N et al (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

  8. 8.

    Hund TJ, Decker KF, Kanter E, Mohler PJ, Boyden PA, Schuessler RB, Yamada KA, Rudy Y (2008) Role of activated CaMKII in abnormal calcium homeostasis and I(Na) remodeling after myocardial infarction: insights from mathematical modeling. J Mol Cell Cardiol 45:420–428

  9. 9.

    McKinsey TA (2007) Derepression of pathological cardiac genes by members of the CaM kinase superfamily. Cardiovasc Res 73:667–677

  10. 10.

    Lisman KA, Stetson SJ, Koerner MM, Farmer JA, Torre-Amione G (2002) The role of inflammation in the pathogenesis of heart failure. Curr Cardiol Rep 4:200–205

  11. 11.

    McQueen MJ, Lonn E, Gerstein HC, Bosch J, Yusuf S (2005) The HOPE (Heart Outcomes Prevention Evaluation) study and its consequences. Scand J Clin Lab Invest Suppl 240:143–156

  12. 12.

    Satoh M, Shimoda Y, Maesawa C, Akatsu T, Ishikawa Y, Minami Y, Hiramori K, Nakamura M (2006) Activated toll-like receptor 4 in monocytes is associated with heart failure after acute myocardial infarction. Int J Cardiol 109:226–234

  13. 13.

    Torre-Amione G (2005) Immune activation in chronic heart failure. Am J Cardiol 95:3C–8C, discussion 38 C– 40 C

  14. 14.

    Zhang T, Johnson EN, Gu Y, Morissette MR, Sah VP, Gigena MS, Belke DD, Dillmann WH, Rogers TB, Schulman H et al (2002) The cardiac-specific nuclear delta B isoform of Ca2+/Calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem 277:1261–1267

  15. 15.

    Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM (2003) Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92:904–911

  16. 16.

    Yang Y, Zhu W-Z, Joiner M-l, Zhang R, Oddis CV, Hou Y, Yang J, Price EE, Gleaves L, Eren M et al (2006) Calmodulin kinase II inhibition protects against myocardial cell apoptosis in vivo. Am J Physiol Heart Circ Physiol 291:H3065–H3075

  17. 17.

    Zhang R, Khoo MS, Wu Y, Yang Y, Grueter CE, Ni G, Price EE Jr, Thiel W, Guatimosim S, Song LS et al (2005) Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11:409

  18. 18.

    Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA et al (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106:2342–2347

  19. 19.

    Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D et al (2009) Requirement for Ca2+/Calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119:1230–1240

  20. 20.

    Anderson ME (2009) CaMKII and a failing strategy for growth in heart. J Clin Invest 119:1082–1085

  21. 21.

    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

  22. 22.

    Frantz S, Bauersachs J, Ertl G (2008) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81(3):474–481. doi:10.1093/cvr/cvn292

  23. 23.

    Mann DL (2003) Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 65:81–101

  24. 24.

    Ren G, Dewald O, Frangogiannis NG (2003) Inflammatory mechanisms in myocardial infarction. Curr Drug Targets Inflamm Allergy 2:242–256

  25. 25.

    Yasojima K, Kilgore KS, Washington RA, Lucchesi BR, McGeer PL (1998) Complement gene expression by rabbit heart: upregulation by ischemia and reperfusion. Circ Res 82:1224–1230

  26. 26.

    Frantz S, Ertl G, Bauersachs J (2007) Mechanisms of disease: toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 4:444–454

  27. 27.

    Krohn CD, Reikeras O, Mollnes TE, Aasen AO (1998) Complement activation and release of interleukin-6 and tumour necrosis factor-alpha in drained and systemic blood after major orthopaedic surgery. Eur J Surg 164:103–108

  28. 28.

    David S, Biancone L, Caserta C, Bussolati B, Cambi V, Camussi G (1997) Alternative pathway complement activation induces proinflammatory activity in human proximal tubular epithelial cells. Nephrol Dial Transplant 12:51–56

  29. 29.

    Sjˆberg AP, Trouw LA, Blom AM (2009) Complement activation and inhibition: a delicate balance. Trends Immunol 30:83–90

  30. 30.

    Meffert MK, Chang JM, Wiltgen BJ, Fanselow MS, Baltimore D (2003) NF-kappa B functions in synaptic signaling and behavior. Nat Neurosci 6:1072–1078

  31. 31.

    Hughes K, Edin S, Antonsson A, Grundstrom T (2001) Calmodulin-dependent kinase II mediates T cell receptor/CD3- and phorbol ester-induced activation of IkappaB kinase. J Biol Chem 276:36008–36013

  32. 32.

    Jang MK, Goo YH, Sohn YC, Kim YS, Lee SK, Kang H, Cheong J, Lee JW (2001) Ca2+/Calmodulin-dependent protein kinase IV stimulates nuclear factor-kappa B transactivation via phosphorylation of the p65 subunit. J Biol Chem 276:20005–20010

  33. 33.

    Ishiguro K, Green T, Rapley J, Wachtel H, Giallourakis C, Landry A, Cao Z, Lu N, Takafumi A, Goto H et al (2006) Ca2+/Calmodulin-dependent protein kinase II is a modulator of CARMA1-mediated NF-kappaB activation. Mol Cell Biol 26:5497–5508

  34. 34.

    Liu X, Yao M, Li N, Wang C, Zheng Y, Cao X (2008) CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood 112:4961–4970

  35. 35.

    Smeets PJH, Teunissen BEJ, Planavila A, de Vogel-van den Bosch H, Willemsen PHM, van der Vusse GJ, van Bilsen M (2008) Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by Peroxisome Proliferator-activated Receptors PPAR{alpha} and PPAR{delta}. J Biol Chem 283:29109–29118

  36. 36.

    Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A (2001) Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci USA 98:6668–6673

  37. 37.

    Li Y, Ha T, Gao X, Kelley J, Williams DL, Browder IW, Kao RL, Li C (2004) NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 287:H1712–H1720

  38. 38.

    Young D, Popovic ZB, Jones WK, Gupta S (2008) Blockade of NF-kappaB using IkappaB alpha dominant-negative mice ameliorates cardiac hypertrophy in myotrophin-overexpressed transgenic mice. J Mol Biol 381:559–568

  39. 39.

    Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

  40. 40.

    Dorn GW 2nd, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

  41. 41.

    Anderson ME (2009) CaMKII and a failing strategy for growth in heart. J Clin Investig 119:1082

  42. 42.

    Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research committee of the heart failure association of the European society of cardiology. Eur J Heart Fail 11:119–129

  43. 43.

    Madias JE, Hood WB Jr (1982) Effects of methylprednisolone on the ischemic damage in patients with acute myocardial infarction. Circulation 65:1106–1113

  44. 44.

    Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, Djian J, Drexler H, Feldman A, Kober L et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602

  45. 45.

    Couchonnal LF, Anderson ME (2008) The role of Calmodulin kinase II in myocardial physiology and disease. Physiology (Bethesda) 23:151–159

  46. 46.

    Yoo B, Lemaire A, Mangmool S, Wolf MJ, Curcio A, Mao L, Rockman HA (2009) Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 297:H1377–H1386

  47. 47.

    Christensen MD, Dun W, Boyden PA, Anderson ME, Mohler PJ, Hund TJ (2009) Oxidized calmodulin kinase II regulates conduction following myocardial infarction: a computational analysis. PLoS Comput Biol 5:e1000583

  48. 48.

    Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34:233–240

  49. 49.

    Zhang XQ, Musch TI, Zelis R, Cheung JY (1999) Effects of impaired Ca2+ homeostasis on contraction in postinfarction myocytes. J Appl Physiol 86:943–950

  50. 50.

    Huber-Lang MS, Riedeman NC, Sarma JV, Younkin EM, McGuire SR, Laudes IJ, Lu KT, Guo RF, Neff TA, Padgaonkar VA et al (2002) Protection of innate immunity by C5aR antagonist in septic mice. FASEB J 16:1567–1574

  51. 51.

    Riedemann NC, Guo RF, Neff TA, Laudes IJ, Keller KA, Sarma VJ, Markiewski MM, Mastellos D, Strey CW, Pierson CL et al (2002) Increased C5a receptor expression in sepsis. J Clin Invest 110:101–108

  52. 52.

    Illario M, Giardino-Torchia ML, Sankar U, Ribar TJ, Galgani M, Vitiello L, Masci AM, Bertani FR, Ciaglia E, Astone D et al (2008) Calmodulin-dependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells. Blood 111:723–731

  53. 53.

    Herrmann TL, Morita CT, Lee K, Kusner DJ (2005) Calmodulin kinase II regulates the maturation and antigen presentation of human dendritic cells. J Leukoc Biol 78:1397–1407

  54. 54.

    Tessier S, Karczewski P, Krause EG, Pansard Y, Acar C, Lang-Lazdunski M, Mercadier JJ, Hatem SN (1999) Regulation of the transient outward K(+) current by Ca(2+)/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res 85:810–819

  55. 55.

    Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Muller FU, Schmitz W et al (2009) Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest 119:1940–1951

  56. 56.

    Liu T, Li G, Li L, Korantzopoulos P (2007) Association between C-reactive protein and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. J Am Coll Cardiol 49:1642–1648

  57. 57.

    Rudolph V, Andrie RP, Rudolph TK, Friedrichs K, Klinke A, Hirsch-Hoffmann B, Schwoerer AP, Lau D, Fu X, Klingel K et al (2010) Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med 16:470–474

  58. 58.

    Liu S, Tinker L, Song Y, Rifai N, Bonds DE, Cook NR, Heiss G, Howard BV, Hotamisligil GS, Hu FB et al (2007) A prospective study of inflammatory cytokines and diabetes mellitus in a multiethnic cohort of postmenopausal women. Arch Intern Med 167:1676–1685

  59. 59.

    Tenenbaum A, Motro M, Fisman EZ, Leor J, Freimark D, Boyko V, Mandelzweig L, Adler Y, Sherer Y, Behar S (2003) Functional class in patients with heart failure is associated with the development of diabetes. Am J Med 114:271–275

  60. 60.

    Mozaffarian D, Marfisi R, Levantesi G, Silletta MG, Tavazzi L, Tognoni G, Valagussa F, Marchioli R (2007) Incidence of new-onset diabetes and impaired fasting glucose in patients with recent myocardial infarction and the effect of clinical and lifestyle risk factors. Lancet 370:667–675

  61. 61.

    Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801

  62. 62.

    Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

  63. 63.

    Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389:610–614

  64. 64.

    Smeets PJ, Teunissen BE, Willemsen PH, van Nieuwenhoven FA, Brouns AE, Janssen BJ, Cleutjens JP, Staels B, van der Vusse GJ, van Bilsen M (2008) Cardiac hypertrophy is enhanced in PPAR alpha-/- mice in response to chronic pressure overload. Cardiovasc Res 78:79–89

  65. 65.

    Kai H, Mori T, Tokuda K, Takayama N, Tahara N, Takemiya K, Kudo H, Sugi Y, Fukui D, Yasukawa H et al (2006) Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertens Res 29:711–718

Download references


This research was funded by Sandler Program for Asthma Research, Fondation Leducq Transatlantic Network, and by NIH (1R01 HL070250, R01 HL096652, HL-079031).

Disclosure statement

MVS and MEA are named inventors on a pending patent on “Use of Calmodulin Kinase II to treat or prevent heart muscle inflammation”. MEA is a named inventor on awarded and pending patents claiming to use CaMKII inhibition for therapeutic purposes.

Author information

Correspondence to Madhu V. Singh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, M.V., Anderson, M.E. Is CaMKII a link between inflammation and hypertrophy in heart?. J Mol Med 89, 537–543 (2011).

Download citation


  • CaMKII
  • Heart
  • Myocardium
  • Myocardial infarction
  • Heart attack
  • Inflammation
  • Hypertrophy
  • Toll-like receptors
  • Oxidative stress
  • ROS
  • AngII