Journal of Molecular Medicine

, Volume 89, Issue 1, pp 83–90 | Cite as

Anti-inflammatory effect of methyl dehydrojasmonate (J2) is mediated by the NF-κB pathway

  • Hye-Ja Lee
  • Kyungah Maeng
  • Hung-The Dang
  • Gyeoung-Jin Kang
  • Chongsuk Ryou
  • Jee H. Jung
  • Hee-Kyoung Kang
  • Josef T. Prchal
  • Eun-Sook Yoo
  • Donghoon Yoon
Original Article


Inflammation as a major defense mechanism against pathogens is modulated by diverse microbial products. A variety of plant and microbial products interacting with Toll-like receptors initiate a wide spectrum of responses from phagocytosis to cytokine production, which modulates inflammation. Jasmonates are fatty acid-derived cyclopentanones produced by plants and lower eukaryotes that play an important role in the defense against insects. In this study, we are set up to define the molecular targets of J2 action. While the lipopolysaccharide (LPS) stimulation of macrophage cell line RAW264.7 induced TNF-α, IL-6, iNOS, and COX-2 that were associated with an increase in miR-155 and miR-146a, the J2 suppressed the induction of these inflammatory cytokines and enzymes as well as miR-155 in a dose-dependent manner. To assess the associations of miR-155 with inflammatory markers, we overexpressed miR-155 and found attenuation of COX-2 suppression with J2 treatment. Furthermore, J2 inhibited NF-κB, p65, and IκB but had no or only minimal effects on the mitogen-activated protein kinase pathway. In conclusion, the present study demonstrates that J2 suppresses LPS stimulation of RAW264.7 cells by targeting NF-κB pathways.


Inflammation Jasmonate miRNAs NF-κB pathway 



This work was supported by the research grant of the Jeju National University in 2008.

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.


  1. 1.
    Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95CrossRefPubMedGoogle Scholar
  2. 2.
    Kaisho T, Akira S (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117:979–987, quiz 988CrossRefPubMedGoogle Scholar
  3. 3.
    Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9CrossRefPubMedGoogle Scholar
  4. 4.
    Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH, Patriotis C, Jenkins NA, Copeland NG, Kollias G, Tsichlis PN (2000) TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103:1071–1083CrossRefPubMedGoogle Scholar
  5. 5.
    Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387–398CrossRefPubMedGoogle Scholar
  6. 6.
    Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, Volk HD, Gaestel M (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1:94–97CrossRefPubMedGoogle Scholar
  7. 7.
    Lazarov S, Balutsov M, Ianev E (2000) The role of bacterial endotoxins, receptors and cytokines in the pathogenesis of septic (endotoxin) shock. Vutr Boles 32:33–40PubMedGoogle Scholar
  8. 8.
    Wu MJ, Wang L, Ding HY, Weng CY, Yen JH (2004) Glossogyne tenuifolia acts to inhibit inflammatory mediator production in a macrophage cell line by downregulating LPS-induced NF-kappa B. J Biomed Sci 11:186–199. doi: 10.1159/000076031 PubMedGoogle Scholar
  9. 9.
    D’Aiuto F, Parkar M, Andreou G, Suvan J, Brett PM, Ready D, Tonetti MS (2004) Periodontitis and systemic inflammation: control of the local infection is associated with a reduction in serum inflammatory markers. J Dent Res 83:156–160CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32:189–197CrossRefPubMedGoogle Scholar
  11. 11.
    Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611CrossRefPubMedGoogle Scholar
  12. 12.
    Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089PubMedGoogle Scholar
  13. 13.
    Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA (2008) Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 180:5689–5698PubMedGoogle Scholar
  14. 14.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486CrossRefPubMedGoogle Scholar
  15. 15.
    Sembdner G, Atzorn R, Schneider G (1994) Plant hormone conjugation. Plant Mol Biol 26:1459–1481CrossRefPubMedGoogle Scholar
  16. 16.
    Fingrut O, Flescher E (2002) Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 16:608–616CrossRefPubMedGoogle Scholar
  17. 17.
    Ishii Y, Kiyota H, Sakai S, Honma Y (2004) Induction of differentiation of human myeloid leukemia cells by jasmonates, plant hormones. Leukemia 18:1413–1419CrossRefPubMedGoogle Scholar
  18. 18.
    Fingrut O, Reischer D, Rotem R, Goldin N, Altboum I, Zan-Bar I, Flescher E (2005) Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells. Br J Pharmacol 146:800–808CrossRefPubMedGoogle Scholar
  19. 19.
    Flescher E (2005) Jasmonates—a new family of anti-cancer agents. Anticancer Drugs 16:911–916CrossRefPubMedGoogle Scholar
  20. 20.
    Rotem R, Heyfets A, Fingrut O, Blickstein D, Shaklai M, Flescher E (2005) Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria. Cancer Res 65:1984–1993CrossRefPubMedGoogle Scholar
  21. 21.
    Dang HT, Lee HJ, Yoo ES, Hong J, Bao B, Choi JS, Jung JH (2008) New jasmonate analogues as potential anti-inflammatory agents. Bioorg Med Chem 16:10228–10235CrossRefPubMedGoogle Scholar
  22. 22.
    Sweet MJ, Hume DA (1996) Endotoxin signal transduction in macrophages. J Leukoc Biol 60:8–26PubMedGoogle Scholar
  23. 23.
    Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan SF, Stern D, Mackman N (2001) Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98:1429–1439CrossRefPubMedGoogle Scholar
  24. 24.
    Ilangumaran S, Ramanathan S, Rottapel R (2004) Regulation of the immune system by SOCS family adaptor proteins. Semin Immunol 16:351–365CrossRefPubMedGoogle Scholar
  25. 25.
    Krishnan AV, Moreno J, Nonn L, Malloy P, Swami S, Peng L, Peehl DM, Feldman D (2007) Novel pathways that contribute to the anti-proliferative and chemopreventive activities of calcitriol in prostate cancer. J Steroid Biochem Mol Biol 103:694–702CrossRefPubMedGoogle Scholar
  26. 26.
    O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609CrossRefPubMedGoogle Scholar
  27. 27.
    Viatour P, Merville MP, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52CrossRefPubMedGoogle Scholar
  28. 28.
    Rajnik M, Salkowski CA, Thomas KE, Li YY, Rollwagen FM, Vogel SN (2002) Induction of early inflammatory gene expression in a murine model of nonresuscitated, fixed-volume hemorrhage. Shock 17:322–328CrossRefPubMedGoogle Scholar
  29. 29.
    Yang F, Oz HS, Barve S, de Villiers WJ, McClain CJ, Varilek GW (2001) The green tea polyphenol (−)-epigallocatechin-3-gallate blocks nuclear factor-kappa B activation by inhibiting I kappa B kinase activity in the intestinal epithelial cell line IEC-6. Mol Pharmacol 60:528–533PubMedGoogle Scholar
  30. 30.
    Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK (2002) Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis 23:983–991CrossRefPubMedGoogle Scholar
  31. 31.
    Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298:1241–1245CrossRefPubMedGoogle Scholar
  32. 32.
    Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109(Suppl):S81–S96CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hye-Ja Lee
    • 1
  • Kyungah Maeng
    • 2
  • Hung-The Dang
    • 3
  • Gyeoung-Jin Kang
    • 1
  • Chongsuk Ryou
    • 4
  • Jee H. Jung
    • 3
  • Hee-Kyoung Kang
    • 1
  • Josef T. Prchal
    • 2
  • Eun-Sook Yoo
    • 1
  • Donghoon Yoon
    • 2
  1. 1.Department of Pharmacology, College of MedicineJeju National UniversityJejuSouth Korea
  2. 2.Hematology DivisionUniversity of Utah and VAHSalt Lake CityUSA
  3. 3.College of PharmacyPusan National UniversityBusanSouth Korea
  4. 4.Department of Microbiology, Immunology & Molecular GeneticsUniversity of KentuckyLexingtonUSA

Personalised recommendations