Advertisement

Journal of Molecular Medicine

, Volume 88, Issue 10, pp 1021–1027 | Cite as

Mitochondria and aging in the vascular system

  • Zoltan UngvariEmail author
  • William E. Sonntag
  • Anna Csiszar
Review

Abstract

This review focuses on mitochondrial abnormalities that occur in the vasculature during aging and explores the link between mitochondrial oxidative stress, chronic low-grade vascular inflammation, increased rate of endothelial apoptosis, and development of vascular diseases in the elderly. Therapeutic strategies targeting the mitochondria for prevention of age-associated vascular dysfunction and disease in old age are considered here based on emerging knowledge of the vasoprotective effects of caloric restriction, caloric restriction mimetics, the GH/IGF-1 axis, and mitochondria-targeted antioxidants.

Keywords

Aging Mitochondria Endothelium 

Notes

Acknowledgement

This work was supported by grants from the American Diabetes Association, the American Federation for Aging Research and the NIH (HL077256, AG11370).

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

References

  1. 1.
    Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147PubMedGoogle Scholar
  2. 2.
    Csiszar A, Wang M, Lakatta EG, Ungvari ZI (2008) Inflammation and endothelial dysfunction during aging: role of NF-{kappa}B. J Appl Physiol 105:1333–1341. doi: 10.1152/japplphysiol.90470.2008 CrossRefPubMedGoogle Scholar
  3. 3.
    Ungvari ZI, Labinskyy N, Gupte SA, Chander PN, Edwards JG, Csiszar A (2008) Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am J Physiol Heart Circ Physiol 294:H2121–H2128CrossRefPubMedGoogle Scholar
  4. 4.
    Ungvari ZI, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z, Smith KE, Csiszar A (2007) Increased mitochondrial H2O2 production promotes endothelial NF-kB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 293:H37–H47CrossRefPubMedGoogle Scholar
  5. 5.
    Csiszar A, Ungvari Z, Koller A, Edwards JG, Kaley G (2003) Aging-induced proinflammatory shift in cytokine expression profile in rat coronary arteries. FASEB J 17:1183–1185PubMedGoogle Scholar
  6. 6.
    Dai DF, Rabinovitch PS (2009) Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends Cardiovasc Med 19:213–220. doi: 10.1016/j.tcm.2009.12.004 CrossRefPubMedGoogle Scholar
  7. 7.
    Phaneuf S, Leeuwenburgh C (2002) Cytochrome c release from mitochondria in the aging heart: a possible mechanism for apoptosis with age. Am J Physiol Regul Integr Comp Physiol 282:R423–R430PubMedGoogle Scholar
  8. 8.
    Sonntag WE, Lynch CD, Cooney PT, Hutchins PM (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 138:3515–3520CrossRefPubMedGoogle Scholar
  9. 9.
    Gao Q, Zhao X, Ahmad M, Wolin MS (2009) Mitochondrial-derived hydrogen peroxide inhibits relaxation of bovine coronary arterial smooth muscle to hypoxia through stimulation of ERK MAP kinase. Am J Physiol Heart Circ Physiol 297:H2262–H2269. doi: 10.1152/ajpheart.00817.2009 CrossRefPubMedGoogle Scholar
  10. 10.
    Wang M, Monticone RE, Lakatta EG (2010) Arterial aging: a journey into subclinical arterial disease. Curr Opin Nephrol Hypertens 19:201–207. doi: 10.1097/MNH.0b013e3283361c0b CrossRefPubMedGoogle Scholar
  11. 11.
    van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Lüscher TF (2000) Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 192:1731–1744CrossRefPubMedGoogle Scholar
  12. 12.
    Csiszar A, Labinskyy N, Jimenez R, Pinto JT, Ballabh P, Losonczy G, Pearson KJ, de Cabo R, Ungvari Z (2009) Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev. doi: 10.1016/j.mad.2009.06.004 PubMedGoogle Scholar
  13. 13.
    Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R (2008) Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 102:519–528CrossRefPubMedGoogle Scholar
  14. 14.
    Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA 100:2112–2116. doi: 10.1073/pnas.0336359100 CrossRefPubMedGoogle Scholar
  15. 15.
    Francia P, delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E, Pelicci PG, Schiavoni M, Luscher TF, Volpe M, Cosentino F (2004) Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 110:2889–2895CrossRefPubMedGoogle Scholar
  16. 16.
    Camici GG, Cosentino F, Tanner FC, Luscher TF (2008) The role of p66Shc deletion in age-associated arterial dysfunction and disease states. J Appl Physiol 105:1628–1631. doi: 10.1152/japplphysiol.90579.2008 CrossRefPubMedGoogle Scholar
  17. 17.
    Yamamori T, White AR, Mattagajasingh I, Khanday FA, Haile A, Qi B, Jeon BH, Bugayenko A, Kasuno K, Berkowitz DE, Irani K (2005) P66shc regulates endothelial NO production and endothelium-dependent vasorelaxation: implications for age-associated vascular dysfunction. J Mol Cell Cardiol 39:992–995. doi: 10.1016/j.yjmcc.2005.09.003 CrossRefPubMedGoogle Scholar
  18. 18.
    Elhadd TA, Abdu TA, Oxtoby J, Kennedy G, McLaren M, Neary R, Belch JJ, Clayton RN (2001) Biochemical and biophysical markers of endothelial dysfunction in adults with hypopituitarism and severe GH deficiency. J Clin Endocrinol Metab 86:4223–4232CrossRefPubMedGoogle Scholar
  19. 19.
    Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay P, Losonczy G, Pacher P, Austad SN, Bartke A, Ungvari Z (2008) Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol 295:H1882–H1894. doi: 10.1152/ajpheart.412.2008 CrossRefPubMedGoogle Scholar
  20. 20.
    Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8:247–268PubMedGoogle Scholar
  21. 21.
    Lopez-Lopez C, Dietrich MO, Metzger F, Loetscher H, Torres-Aleman I (2007) Disturbed cross talk between insulin-like growth factor I and AMP-activated protein kinase as a possible cause of vascular dysfunction in the amyloid precursor protein/presenilin 2 mouse model of Alzheimer’s disease. J Neurosci 27:824–831CrossRefPubMedGoogle Scholar
  22. 22.
    Groban L, Pailes NA, Bennett CD, Carter CS, Chappell MC, Kitzman DW, Sonntag WE (2006) Growth hormone replacement attenuates diastolic dysfunction and cardiac angiotensin II expression in senescent rats. J Gerontol A Biol Sci Med Sci 61:28–35PubMedGoogle Scholar
  23. 23.
    Khan AS, Sane DC, Wannenburg T, Sonntag WE (2002) Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res 54:25–35CrossRefPubMedGoogle Scholar
  24. 24.
    Sonntag WE, Lynch C, Thornton P, Khan A, Bennett S, Ingram R (2000) The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. J Anat 197(Pt 4):575–585CrossRefPubMedGoogle Scholar
  25. 25.
    Puche JE, Garcia-Fernandez M, Muntane J, Rioja J, Gonzalez-Baron S, Castilla Cortazar I (2008) Low doses of insulin-like growth factor-I induce mitochondrial protection in aging rats. Endocrinology 149:2620–2627. doi: 10.1210/en.2007-1563 CrossRefPubMedGoogle Scholar
  26. 26.
    Csiszar A, Labinskyy N, Podlutsky A, Kaminski PM, Wolin MS, Zhang C, Mukhopadhyay P, Pacher P, Hu F, de Cabo R, Ballabh P, Ungvari Z (2008) Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am J Physiol Heart Circ Physiol 294:H2721–H2735CrossRefPubMedGoogle Scholar
  27. 27.
    Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119:524–530. doi: 10.1172/JCI36703 CrossRefPubMedGoogle Scholar
  28. 28.
    Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI (2010) Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res. doi: 10.1161/CIRCRESAHA.109.214601 PubMedGoogle Scholar
  29. 29.
    Labinskyy N, Mukhopadhyay P, Toth J, Szalai G, Veres M, Losonczy G, Pinto JT, Pacher P, Ballabh P, Podlutsky A, Austad SN, Csiszar A, Ungvari Z (2009) Longevity is associated with increased vascular resistance to high glucose-induced oxidative stress and inflammatory gene expression in Peromyscus leucopus. Am J Physiol Heart Circ Physiol 296:H946–H956. doi: 10.1152/ajpheart.00693.2008 CrossRefPubMedGoogle Scholar
  30. 30.
    Lopez-Lluch G, Irusta PM, Navas P, de Cabo R (2008) Mitochondrial biogenesis and healthy aging. Exp Gerontol 43:813–819. doi: 10.1016/j.exger.2008.06.014 CrossRefPubMedGoogle Scholar
  31. 31.
    Burns EM, Kruckeberg TW, Comerford LE, Buschmann MT (1979) Thinning of capillary walls and declining numbers of endothelial mitochondria in the cerebral cortex of the aging primate, Macaca nemestrina. J Gerontol 34:642–650PubMedGoogle Scholar
  32. 32.
    Burns EM, Kruckeberg TW, Gaetano PK (1981) Changes with age in cerebral capillary morphology. Neurobiol Aging 2:283–291CrossRefPubMedGoogle Scholar
  33. 33.
    Lopez-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R (2006) Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 103:1768–1773CrossRefPubMedGoogle Scholar
  34. 34.
    Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317CrossRefPubMedGoogle Scholar
  35. 35.
    Addabbo F, Ratliff B, Park HC, Kuo MC, Ungvari Z, Csiszar A, Krasnikov B, Sodhi K, Zhang F, Nasjletti A, Goligorsky MS (2009) The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach. Am J Pathol 174:34–43. doi: 10.2353/ajpath.2009.080650 CrossRefPubMedGoogle Scholar
  36. 36.
    Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5:151–156. doi: 10.1016/j.cmet.2007.01.008 CrossRefPubMedGoogle Scholar
  37. 37.
    Echave P, Machado-da-Silva G, Arkell RS, Duchen MR, Jacobson J, Mitter R, Lloyd AC (2009) Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis. J Cell Sci 122:4516–4525. doi: 10.1242/jcs.049734 CrossRefPubMedGoogle Scholar
  38. 38.
    Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192. doi: 10.1074/jbc.M503062200 CrossRefPubMedGoogle Scholar
  39. 39.
    Jendrach M, Pohl S, Voth M, Kowald A, Hammerstein P, Bereiter-Hahn J (2005) Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev 126:813–821. doi: 10.1016/j.mad.2005.03.002 CrossRefPubMedGoogle Scholar
  40. 40.
    Makino A, Scott BT, Dillmann WH (2010) Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia. doi: 10.1007/s00125-010-1770-4, in pressGoogle Scholar
  41. 41.
    Linford NJ, Beyer RP, Gollahon K, Krajcik RA, Malloy VL, Demas V, Burmer GC, Rabinovitch PS (2007) Transcriptional response to aging and caloric restriction in heart and adipose tissue. Aging Cell 6:673–688. doi: 10.1111/j.1474-9726.2007.00319.x CrossRefPubMedGoogle Scholar
  42. 42.
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395. doi: 10.1038/nature08221 PubMedGoogle Scholar
  43. 43.
    Zou Y, Yoon S, Jung KJ, Kim CH, Son TG, Kim MS, Kim YJ, Lee J, Yu BP, Chung HY (2006) Upregulation of aortic adhesion molecules during aging. J Gerontol 61:232–244Google Scholar
  44. 44.
    Donato AJ, Black AD, Jablonski KL, Gano LB, Seals DR (2008) Aging is associated with greater nuclear NFkappaB, reduced IkappaBalpha, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell 7:805–812. doi: 10.1111/j.1474-9726.2008.00438.x CrossRefPubMedGoogle Scholar
  45. 45.
    Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100:1659–1666CrossRefPubMedGoogle Scholar
  46. 46.
    Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97:9052–9057CrossRefPubMedGoogle Scholar
  47. 47.
    Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104:14855–14860CrossRefPubMedGoogle Scholar
  48. 48.
    Csiszar A, Labinskyy N, Jimenez R, Pinto JT, Ballabh P, Losonczy G, Pearson KJ, de Cabo R, Ungvari Z (2009) Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev 130:518–527. doi: 10.1016/j.mad.2009.06.004 CrossRefPubMedGoogle Scholar
  49. 49.
    Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R (2007) Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 116:2809–2817. doi: 10.1161/CIRCULATIONAHA.107.725697 CrossRefPubMedGoogle Scholar
  50. 50.
    Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, Swindell WR, Kamara D, Minor RK, Perez E, Jamieson HA, Zhang Y, Dunn SR, Sharma K, Pleshko N, Woollett LA, Csiszar A, Ikeno Y, Le Couteur D, Elliott PJ, Becker KG, Navas P, Ingram DK, Wolf NS, Ungvari Z, Sinclair DA, de Cabo R (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168CrossRefPubMedGoogle Scholar
  51. 51.
    Ungvari ZI, Labinskyy N, Mukhopadhyay P, Pinto JT, Bagi Z, Ballabh P, Zhang C, Pacher P, Csiszar A (2009) Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.00375.2009 Google Scholar
  52. 52.
    Csiszar A, Labinskyy N, Pinto JT, Ballabh P, Zhang H, Losonczy G, Pearson K, de Cabo R, Pacher P, Zhang C, Ungvari Z (2009) Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 297:H13–H20. doi: 10.1152/ajpheart.00368.2009 CrossRefPubMedGoogle Scholar
  53. 53.
    Ungvari Z, Labinskyy N, Mukhopadhyay P, Pinto JT, Bagi Z, Ballabh P, Zhang C, Pacher P, Csiszar A (2009) Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol 297:H1876–H1881. doi: 10.1152/ajpheart.00375.2009 CrossRefPubMedGoogle Scholar
  54. 54.
    Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Csiszar A (2010) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2 Am J Physiol Heart Circ Physiol: in pressGoogle Scholar
  55. 55.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122CrossRefPubMedGoogle Scholar
  56. 56.
    Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA 103:5379–5384. doi: 10.1073/pnas.0601026103 CrossRefPubMedGoogle Scholar
  57. 57.
    Csiszar A, Ungvari Z, Edwards JG, Kaminski PM, Wolin MS, Koller A, Kaley G (2002) Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 90:1159–1166CrossRefPubMedGoogle Scholar
  58. 58.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424CrossRefPubMedGoogle Scholar
  59. 59.
    Radovits T, Seres L, Gero D, Lin LN, Beller CJ, Chen SH, Zotkina J, Berger I, Groves JT, Szabo C, Szabo G (2007) The peroxynitrite decomposition catalyst FP15 improves ageing-associated cardiac and vascular dysfunction. Mech Ageing Dev 128:173–181. doi: 10.1016/j.mad.2006.09.005 CrossRefPubMedGoogle Scholar
  60. 60.
    Someya S, Xu J, Kondo K, Ding D, Salvi RJ, Yamasoba T, Rabinovitch PS, Weindruch R, Leeuwenburgh C, Tanokura M, Prolla TA (2009) Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci USA 106:19432–19437. doi: 10.1073/pnas.0908786106 CrossRefPubMedGoogle Scholar
  61. 61.
    Smith AR, Visioli F, Frei B, Hagen TM (2008) Lipoic acid significantly restores, in rats, the age-related decline in vasomotion. Br J Pharmacol 153:1615–1622. doi: 10.1038/bjp.2008.28 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Zoltan Ungvari
    • 1
    Email author
  • William E. Sonntag
    • 1
  • Anna Csiszar
    • 1
  1. 1.Reynolds Oklahoma Center on Aging, Department of Geriatric MedicineUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations