Journal of Molecular Medicine

, Volume 88, Issue 12, pp 1203–1211 | Cite as

ADAMTS proteases: key roles in atherosclerosis?

  • Rebecca C. Salter
  • Tim G. Ashlin
  • Alvin P. L. Kwan
  • Dipak P. RamjiEmail author


The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteases are secreted enzymes that regulate extracellular matrix turnover by degrading specific matrix components. Roles for the proteases in inflammation and atherosclerosis have been suggested by a number of recent studies, and the role of ADAMTS-4 and -5 in the breakdown of aggrecan and subsequent degradation of cartilage during osteoarthritis has also been established. The ability of the ADAMTS proteases to degrade versican, the primary proteoglycan in the vasculature, is thought to be central to any hypothesized role for the proteases in atherosclerosis. In this review, we introduce the structure and function of the ADAMTS family of proteases and review the literature that links them with inflammation and atherosclerosis.


ADAMTS Atherosclerosis Inflammation Versican Extracellular matrix 



Rebecca C. Salter and Tim G. Ashlin were recipients of BBSRC studentships.

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.


  1. 1.
    Porter S, Clark I, Keveorkian L, Edwards D (2005) The ADAMTS metalloproteinases. Biochem J 386:15–27CrossRefPubMedGoogle Scholar
  2. 2.
    Jones GC, Riley GP (2005) ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis Res Ther 7:160–169CrossRefPubMedGoogle Scholar
  3. 3.
    Wang W, Lee S, Steiglitz B, Scott I, Lebares C, Allen M, Brenner M, Takahara K, Greenspan D (2003) Transforming growth factor-beta induces secretion of activated ADAMTS-2. A procollagen III N-proteinase. J Biol Chem 278:19549–19557CrossRefPubMedGoogle Scholar
  4. 4.
    Apte S (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284:31493–31497CrossRefPubMedGoogle Scholar
  5. 5.
    Shindo T, Kurihara H, Kuno K, Yokoyama H, Wada T, Kurihara Y, Imai T, Wang Y, Ogata M, Nishimatsu H, Moriyama N, Oh-hashi Y, Morita H, Ishikawa T, Nagai R, Yazaki Y, Matsushima K (2000) ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J Clin Invest 105:1345–1352CrossRefPubMedGoogle Scholar
  6. 6.
    Kuno K, Kanada N, Nakashima E, Fujiki F, Ichimura F, Matsushima K (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J Biol Chem 272:556–562CrossRefPubMedGoogle Scholar
  7. 7.
    Vázquez F, Hastings G, Ortega M, Lane T, Oikemus S, Lombardo M, Iruela-Arispe M (1999) METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem 274:23349–23357CrossRefPubMedGoogle Scholar
  8. 8.
    Kuno K, Okada Y, Kawashima H, Nakamura H, Miyasaka M, Ohno H, Matsushima K (2000) ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett 478:241–245CrossRefPubMedGoogle Scholar
  9. 9.
    Naito S, Shiomi T, Okada A, Kimura T, Chijiiwa M, Fujita Y, Yatabe T, Komiya K, Enomoto H, Fujikawa K, Okada Y (2007) Expression of ADAMTS-4 (aggrecanase-1) in human osteoarthritic cartilage. Pathol Int 57:703–711CrossRefPubMedGoogle Scholar
  10. 10.
    Miwa H, Gerken T, Huynh T, Duesler L, Cotter M, Hering T (2009) Conserved sequence in the aggrecan interglobular domain modulates cleavage by ADAMTS-4 and ADAMTS-5. Biochim Biophys Acta 1790:161–172PubMedGoogle Scholar
  11. 11.
    Huang K, Wu L (2008) Aggrecanase and aggrecan degradation in osteoarthritis: a review. J Int Med Res 36:1149–1160PubMedGoogle Scholar
  12. 12.
    Bondeson J, Wainwright S, Hughes C, Caterson B (2008) The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis: a review. Clin Exp Rheumatol 26:139–145PubMedGoogle Scholar
  13. 13.
    Wight T, Merrilees M (2004) Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 94:1158–1167CrossRefPubMedGoogle Scholar
  14. 14.
    Haddock G, Cross A, Allan S, Sharrack B, Callaghan J, Bunning R, Buttle D, Woodroofe M (2007) Brevican and phosphacan expression and localization following transient middle cerebral artery occlusion in the rat. Biochem Soc Trans 35:692–694CrossRefPubMedGoogle Scholar
  15. 15.
    Nakamura H, Fujii Y, Inoki I, Sukimoto K, Tanzawa K, Matsuki H, Miura R, Yamaguchi Y, Okada Y (2000) Brevican is degraded by matrix metalloproteinases and aggrecanase-1 (ADAMTS4) at different sites. J Biol Chem 275:38885–38890CrossRefPubMedGoogle Scholar
  16. 16.
    Viapiano M, Hockfield S, Matthews R (2008) BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion. J Neurooncol 88:261–272CrossRefPubMedGoogle Scholar
  17. 17.
    Hofer T, Frankenburger M, Mages J, Lang R, Hoffmann R, Colige A, Ziegler-Heitbrock L (2008) Tissue-specific induction of ADAMTS2 in monocytes and macrophages by glucocorticoids. J Mol Med 86:323–332CrossRefPubMedGoogle Scholar
  18. 18.
    Fujikawa K, Suzuki H, McMullen B, Chung D (2001) Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 98:1662–1666CrossRefPubMedGoogle Scholar
  19. 19.
    Moriguchi-Goto S, Yamashita A, Tamura N, Soejima K, Takahashi M, Nakagaki T, Goto S, Asada Y (2009) ADAMTS-13 attenuates thrombus formation on type I collagen surface and disrupted plaques under flow conditions. Atherosclerosis 203:409–416CrossRefPubMedGoogle Scholar
  20. 20.
    Long Zheng X (2010) ADAMTS13 testing: why bother? Blood 115:1475–1476CrossRefPubMedGoogle Scholar
  21. 21.
    Kuno K, Terashima Y, Matsushima K (1999) ADAMTS-1 is an active metalloproteinase associated with the extracellular matrix. J Biol Chem 274:18821–18826CrossRefPubMedGoogle Scholar
  22. 22.
    Wang P, Tortorella M, England K, Malfait A, Thomas G, Arner E, Pei D (2004) Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network. J Biol Chem 279:15434–15440CrossRefPubMedGoogle Scholar
  23. 23.
    Gerhardt S, Hassall G, Hawtin P, McCall E, Flavell L, Minshull C, Hargreaves D, Ting A, Pauptit R, Parker A, Abbott W (2007) Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains. J Mol Biol 373:891–902CrossRefPubMedGoogle Scholar
  24. 24.
    Gao G, Westling J, Thompson V, Howell T, Gottschall P, Sandy J (2002) Activation of the proteolytic activity of ADAMTS4 (aggrecanase-1) by C-terminal truncation. J Biol Chem 277:11034–11041CrossRefPubMedGoogle Scholar
  25. 25.
    Kuno K, Matsushima K (1998) ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type 1 motifs and its spacing region. J Biol Chem 273:13912–13917CrossRefPubMedGoogle Scholar
  26. 26.
    Flannery C, Zeng W, Corcoran C, Collins-Racie L, Chockalingam P, Hebert T, Mackie S, McDonagh T, Crawford T, Tomkinson K, LaVallie E, Morris E (2002) Autocatalytic cleavage of ADAMTS-4 (aggrecanase-1) reveals multiple glycosaminoglycan-binding sites. J Biol Chem 277:42775–42780CrossRefPubMedGoogle Scholar
  27. 27.
    Tortorella M, Pratta M, Liu R, Abbaszade I, Ross H, Burn T, Arner E (2000) The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. J Biol Chem 275:25791–25797CrossRefPubMedGoogle Scholar
  28. 28.
    Hashimoto G, Shimoda M, Okada Y (2004) ADAMTS-4 (aggrecanase-1) interaction with the C-terminal domain of fibronectin inhibits proteolysis of aggrecan. J Biol Chem 279:32483–32491CrossRefPubMedGoogle Scholar
  29. 29.
    Wight TN (2005) The ADAMTS proteases, extracellular matrix, and vascular disease: waking the sleeping giant(s)! Arterioscler Thromb Vasc Biol 25:12–14PubMedGoogle Scholar
  30. 30.
    Galis Z, Khatri J (2002) Matrix metalloproteinases in vascular remodelling and atherogenesis: the good, the bad and the ugly. Circ Res 90:251–262PubMedGoogle Scholar
  31. 31.
    Rodríguez-Manzaneque J, Westling J, Thai S, Luque A, Knauper V, Murphy G, Sandy J, Iruela-Arispe M (2002) ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem Biophys Res Commun 293:501–508CrossRefPubMedGoogle Scholar
  32. 32.
    Hashimoto G, Aoki H, Nakamura K, Tanzawa Y, Okada Y (2001) Inhibition of ADAMTS4 (aggrecanase-1) by tissue inhibitors of metalloproteinases (TIMP-1, 2, 3 and 4). FEBS Lett 494:192–195Google Scholar
  33. 33.
    Kashiwagi M, Tortorella M, Nagase H, Brew K (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 276:12501–12504CrossRefPubMedGoogle Scholar
  34. 34.
    Troeberg L, Fushimi K, Scilabra S, Nakamura H, Dive V, Thøgersen I, Enghild J, Nagase H (2009) The C-terminal domains of ADAMTS-4 and ADAMTS-5 promote association with N-TIMP-3. Matrix Biol 28:463–469CrossRefPubMedGoogle Scholar
  35. 35.
    Bui Q, Prempeh M, Wilensky R (2009) Atherosclerotic plaque development. Int J Biochem Cell Biol 41:2109–2113CrossRefPubMedGoogle Scholar
  36. 36.
    Lusis A, Mar R, Pajukanta P (2004) Genetics of atherosclerosis. Annu Rev Genomics Hum Genet 5:189–218CrossRefPubMedGoogle Scholar
  37. 37.
    Glass C, Witztum J (2001) Atherosclerosis: the road ahead. Cell 104:503–516CrossRefPubMedGoogle Scholar
  38. 38.
    Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815CrossRefPubMedGoogle Scholar
  39. 39.
    Li A, Glass C (2002) The macrophage foam cell as a target for therapeutic intervention. Nat Med 8:1235–1242CrossRefPubMedGoogle Scholar
  40. 40.
    Shashkin P, Dragulev B, Ley K (2005) Macrophage differentiation to foam cells. Curr Pharm Des 11:3061–3072CrossRefPubMedGoogle Scholar
  41. 41.
    Halvorsen B, Otterdal K, Dahl T, Skjelland M, Gullestad L, Øie E, Aukrust P (2008) Atherosclerotic plaque stability—what determines the fate of a plaque? Prog Cardiovasc Dis 51:183–194Google Scholar
  42. 42.
    Newby A (2007) Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 17:253–258CrossRefPubMedGoogle Scholar
  43. 43.
    Raffetto J, Khalil R (2008) Matrix metalloproteases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 75:346–359CrossRefPubMedGoogle Scholar
  44. 44.
    Galis Z, Sukhova G, Lark M, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503CrossRefPubMedGoogle Scholar
  45. 45.
    Wågsäter D, Björk H, Zhu C, Björkegren J, Valen G, Hamsten A, Eriksson P (2008) ADAMTS-4 and -8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis 196:514–522CrossRefPubMedGoogle Scholar
  46. 46.
    Malemud C (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701CrossRefPubMedGoogle Scholar
  47. 47.
    Worley J, Baugh M, Hughes D, Edwards D, Hogan A, Sampson M, Gavrilovic J (2003) Metalloproteinase expression in PMA-stimulated THP-1 cells. Effects of peroxisome proliferator-activated receptor-gamma (PPAR gamma) agonists and 9-cis-retinoic acid. J Biol Chem 278:51340–51346CrossRefPubMedGoogle Scholar
  48. 48.
    Whatling C, Björk H, Gredmark S, Hamsten A, Eriksson P (2004) Effect of macrophage differentiation and exposure to mildly oxidised LDL on the proteolytic repertoire of THP-1 monocytes. J Lipid Res 45:1768–1776CrossRefPubMedGoogle Scholar
  49. 49.
    Jönsson-Rylander A, Nilsson T, Fritsche-Danielson R, Hammarström A, Behrendt M, Andersson J, Lindgren K, Andersson A, Wallbrandt P, Rosengren B, Brodin P, Thelin A, Westin A, Hurt-Camejo E, Lee-Søgaard C (2005) Role of ADAMTS-1 in atherosclerosis: Remodeling of carotid artery, immunohistochemistry, and proteolysis of Versican. Arterioscler Thromb Vasc Biol 25:180–185PubMedGoogle Scholar
  50. 50.
    Norata G, Björk H, Hamsten A, Catapano A, Eriksson P (2004) High-density lipoprotein subfraction 3 decreases ADAMTS-1 expression induced by lipopolysaccharide and tumor necrosis factor-alpha in human endothelial cells. Matrix Biol 22:557–560CrossRefPubMedGoogle Scholar
  51. 51.
    Luque A, Carpizo D, Iruela-Arispe M (2003) ADAMTS-1/METH-1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF 165. J Biol Chem 278:23656–23665CrossRefPubMedGoogle Scholar
  52. 52.
    Xu Z, Yu Y, Duh E (2006) Vascular endothelial growth factor upregulates expression of ADAMTS1 in endothelial cells through protein kinase C signaling. Invest Opthalmol Vis Sci 47:4059–4066CrossRefGoogle Scholar
  53. 53.
    Hatipoglu O, Hirohata S, Cilek M, Ogawa H, Miyoshi T, Obika M, Demircan K, Shinohata R, Kusachi S, Ninomiya Y (2009) ADAMTS1 is a unique hypoxic early response gene expressed by endothelial cells. J Biol Chem 284:16325–16333CrossRefPubMedGoogle Scholar
  54. 54.
    Bongrazio M, Baumann C, Zakrzewicz A, Pries A, Gaehtgens P (2000) Evidence for modulation of genes involved in vascular adaptation by prolonged exposure of endothelial cells to shear stress. Cardiovasc Res 47:384–393CrossRefPubMedGoogle Scholar
  55. 55.
    Lemire J, Chan C, Bressler S, Miller J, LeBaron R, Wight T (2007) Interleukin-1beta selectively decreases the synthesis of versican by arterial smooth muscle cells. J Cell Biochem 101:753–766CrossRefPubMedGoogle Scholar
  56. 56.
    Kenagy R, Fischer J, Lara S, Sandy J, Clowes A, Wight T (2005) Accumulation and loss of extracellular matrix during shear stress-mediated intimal growth and regression in baboon vascular grafts. J Histochem Cytochem 53:131–140CrossRefPubMedGoogle Scholar
  57. 57.
    Sandy J, Westling J, Kenagy R, Iruela-Arispe M, Verscharen C, Rodriguez-Mazaneque J, Zimmermann D, Lemire J, Fischer J, Wight T, Clowes A (2001) Versican V1 proteolysis in human aorta in vivo occurs at the Glu441–Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem 276:13372–13378CrossRefPubMedGoogle Scholar
  58. 58.
    Wight T (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14:617–623CrossRefPubMedGoogle Scholar
  59. 59.
    Rahmani M, Wong B, Ang L, Cheung C, Carthy J, Walinski H, McManus B (2006) Versican: signaling to transcriptional control pathways. Can J Physiol Pharmacol 84:77–92CrossRefPubMedGoogle Scholar
  60. 60.
    Kenagy R, Plaas A, Wight T (2006) Versican degradation and vascular disease. Trends Cardiovasc Med 16:209–215CrossRefPubMedGoogle Scholar
  61. 61.
    Mazzucato M, Cozzi M, Pradella P, Perissinotto D, Malmstrom A, Morgelin M, Spessotto P, Colombatti A, De Marco L, Perris R (2002) Vascular PG-M/versican variants promote platelet adhesion at low shear rates and cooperate with collagens to induce aggregation. FASEB J 16:1903–1916CrossRefPubMedGoogle Scholar
  62. 62.
    Evanko S, Angello J, Wight T (1999) Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:1004–1013PubMedGoogle Scholar
  63. 63.
    Evanko S, Johnson P, Braun K, Underhill C, Dudhia J, Wight T (2001) Platelet-derived growth factor stimulates the formation of versican–hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells. Arch Biochem Biophys 394:29–38CrossRefPubMedGoogle Scholar
  64. 64.
    Hirose J, Kawashima H, Yoshie O, Tashiro K, Miyasaka M (2001) Versican interacts with chemokines and modulates cellular responses. J Biol Chem 276:5228–5234CrossRefPubMedGoogle Scholar
  65. 65.
    Kawashima H, Hirose M, Hirose J, Nagakubo D, Plaas A, Miyasaka M (2000) Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, v, to L-selectin, P-selectin, and CD44. J Biol Chem 275:35448–35456CrossRefPubMedGoogle Scholar
  66. 66.
    Ismail N, Alavi M, Moore S (1994) Lipoprotein–proteoglycan complexes from injured rabbit aortas accelerate lipoprotein uptake by arterial smooth muscle cells. Atherosclerosis 105:79–87CrossRefPubMedGoogle Scholar
  67. 67.
    Srinivasan S, Xu J, Vijayagopal P, Radhakrishnamurthy B, Berenson G (1995) Low-density lipoprotein binding affinity of arterial chondroitin sulfate proteoglycan variants modulates cholesteryl ester accumulation in macrophages. Biochim Biophys Acta 1272:61–67PubMedGoogle Scholar
  68. 68.
    Hurt-Camejo E, Camejo G, Rosengren B, López F, Ahlström C, Fager G, Bondjers G (1992) Effect of arterial proteoglycans and glycosaminoglycans on low density lipoprotein oxidation and its uptake by human macrophages and arterial smooth muscle cells. Arterioscler Thromb Vasc Biol 12:569–583Google Scholar
  69. 69.
    Llorente-Cortés V, Otero-Viñas M, Hurt-Camejo E, Martínez-González J, Badimon L (2002) Human coronary smooth muscle cells internalize versican-modified LDL through LDL receptor-related protein and LDL receptors. Arterioscler Thromb Vasc Biol 22:387–393CrossRefPubMedGoogle Scholar
  70. 70.
    Olin K, Potter-Perigo S, Barrett P, Wight T, Chait A (1999) Lipoprotein lipase enhances the binding of native and oxidized low density lipoproteins to versican and biglycan synthesized by cultured arterial smooth muscle cells. J Biol Chem 274:34629–34636CrossRefPubMedGoogle Scholar
  71. 71.
    Wang L, Zheng J, Bai X, Liu B, Liu C, Xu Q, Zhu Y (2009) ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res 104:688–698CrossRefPubMedGoogle Scholar
  72. 72.
    Kenagy R, Min S, Clowes A, Sandy J (2009) Cell death-associated ADAMTS4 and versican degradation in vascular tissue. J Histochem Cytochem 57:889–897CrossRefPubMedGoogle Scholar
  73. 73.
    Schönherr E, Järveläinen H, Sandell L, Wight T (1991) Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem 266:17640–17647PubMedGoogle Scholar
  74. 74.
    Evanko S, Raines E, Ross R, Gold L, Wight T (1998) Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am J Pathol 152:533–546PubMedGoogle Scholar
  75. 75.
    Malfait A, Liu R, Ijiri K, Komiya S, Tortorella M (2002) Inhibition of ADAMTS-4 and ADAMTS-5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem 277:22201–22208CrossRefPubMedGoogle Scholar
  76. 76.
    Ozbalkan Z, Efe C, Cesur M, Ertek S, Nairoglu N, Berneis K, Rizzo M (2010) An update on the relationships between rheumatoid arthritis and atherosclerosis. Atherosclerosis. doi: 10.1016/j.atherosclerosis.2010.03.035 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rebecca C. Salter
    • 1
  • Tim G. Ashlin
    • 1
  • Alvin P. L. Kwan
    • 1
  • Dipak P. Ramji
    • 1
    Email author
  1. 1.School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations