Journal of Molecular Medicine

, Volume 88, Issue 7, pp 729–740 | Cite as

TRAIL signaling is mediated by DR4 in pancreatic tumor cells despite the expression of functional DR5

  • Johannes Lemke
  • Andreas Noack
  • Dieter Adam
  • Vladimir Tchikov
  • Uwe Bertsch
  • Christian Röder
  • Stefan Schütze
  • Harald Wajant
  • Holger Kalthoff
  • Anna TrauzoldEmail author
Original article


Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) and agonistic anti-DR4/TRAIL-R1 and anti-DR5/TRAIL-R2 antibodies are currently under clinical investigation for treatment of different malignancies. TRAIL activates DR4 and DR5 and thereby triggers apoptotic and non-apoptotic signaling pathways, but possible different roles of DR4 or DR5 in these responses has poorly been addressed so far. In the present work, we analyzed cell viability, DISC formation as well as IL-8 and NF–κB activation side by side in responses to TRAIL and agonistic antibodies against DR4 (mapatumumab) and against DR5 (lexatumumab) in pancreatic ductal adenocarcinoma cells. We found that all three reagents are able to activate cell death and pro-inflammatory signaling. Death-inducing signaling complex (DISC) analysis revealed that mapatumumab and lexatumumab induce formation of homocomplexes of either DR4 or DR5, whereas TRAIL additionally stimulated the formation of heterocomplexes of both receptors. Notably, blocking of receptors using DR4- and DR5-specific Fab fragments indicated that TRAIL exerted its function predominantly via DR4. Interestingly, inhibition of PKC by Goe6983 enabled DR5 to trigger apoptotic signaling in response to TRAIL and also strongly enhanced lexatumumab-mediated cell death. Our results suggest the existence of mechanisms that silence DR5 for TRAIL- but not for agonistic-antibody treatment.


TRAIL DR4/DR5 Mapatumumab Lexatumumab Pancreatic adenocarcinoma 



We thank Daniela Berg and Andreas Wicovsky for generation and characterization of TRAIL-receptor-specific antibodies and Fab fragments, Daniela Wesch for help with FACS analyses, and Robin Humphreys at Human Genome Sciences for supporting us with mapatumumab and lexatumumab antibodies. Some of the data are part of the doctoral thesis of Johannes Lemke. This work was supported by the DFG grant SFB 415/A3 given to Holger Kalthoff and DFG grants SCHU733/7-1 and SCHU 733/9-1 given to Stefan Schütze. In addition, the authors have no conflicts of interest to declare. All authors contributed to the preparation of the manuscript.

Supplementary material

109_2010_619_MOESM1_ESM.doc (2.7 mb)
Supplementary Fig. 1 (DOC 2747 kb)


  1. 1.
    Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis inducing ligand in vivo. Nat Med 5:157–163PubMedCrossRefGoogle Scholar
  2. 2.
    Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113PubMedCrossRefGoogle Scholar
  3. 3.
    Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J (1997) Characterization of two receptors for TRAIL. FEBS let 416:329–334CrossRefGoogle Scholar
  4. 4.
    Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815–818PubMedCrossRefGoogle Scholar
  5. 5.
    Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA et al (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16:5386–5397PubMedCrossRefGoogle Scholar
  6. 6.
    Screaton GR, Mongkolsapaya J, Xu XN, Cowper AE, McMichael AJ, Bell JI (1997) TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. Curr Biol 7:693–696PubMedCrossRefGoogle Scholar
  7. 7.
    Falschlehner C, Emmerich CH, Gerlach B, Walczak H (2007) TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39:1462–1475PubMedCrossRefGoogle Scholar
  8. 8.
    Koschny R, Holland H, Sykora J, Haas TL, Sprick MR, Ganten TM, Krupp W, Bauer M, Ahnert P, Meixensberger J et al (2007) Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res 13:3403–3412PubMedCrossRefGoogle Scholar
  9. 9.
    Newsom-Davis T, Prieske S, Walczak H (2009) Is TRAIL the holy grail of cancer therapy? Apoptosis 14:607–623PubMedCrossRefGoogle Scholar
  10. 10.
    Bin L, Thorburn J, Thomas LR, Clark PE, Humphreys R, Thorburn A (2007) Tumor-derived mutations in the TRAIL receptor DR5 inhibit TRAIL signaling through the DR4 receptor by competing for ligand binding. J Biol Chem 282:28189–28194PubMedCrossRefGoogle Scholar
  11. 11.
    Shin MS, Kim HS, Lee SH, Park WS, Kim SY, Park JY, Lee JH, Lee SK, Lee SN, Jung SS et al (2001) Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res 61:4942–4946PubMedGoogle Scholar
  12. 12.
    Park WS, Lee JH, Shin MS, Park JY, Kim HS, Kim YS, Park CH, Lee SK, Lee SH, Lee SN et al (2001) Inactivating mutations of KILLER/DR5 gene in gastric cancers. Gastroenterology 121:1219–1225PubMedCrossRefGoogle Scholar
  13. 13.
    Grotzer MA, Eggert A, Zuzak TJ, Janss AJ, Marwaha S, Wiewrodt BR, Ikegaki N, Brodeur GM, Phillips PC (2000) Resistance to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogene 19:4604–4610PubMedCrossRefGoogle Scholar
  14. 14.
    Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM (2001) Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20:5865–5877PubMedCrossRefGoogle Scholar
  15. 15.
    Trauzold A, Wermann H, Arlt A, Schutze S, Schafer H, Oestern S, Roder C, Ungefroren H, Lampe E, Heinrich M et al (2001) CD95 and TRAIL receptor- mediated activation of protein kinase C and NF–kappaB contributes to apoptosis resistance in ductal pancreatic adenocarcinoma cells. Oncogene 20:4258–4269PubMedCrossRefGoogle Scholar
  16. 16.
    Park SM, Schickel R, Peter ME (2005) Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol 17:610–616PubMedCrossRefGoogle Scholar
  17. 17.
    Di Pietro R, Zauli G (2004) Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J Cell Physiol 201:331–340PubMedCrossRefGoogle Scholar
  18. 18.
    Siegmund D, Klose S, Zhou D, Baumann B, Roder C, Kalthoff H, Wajant H, Trauzold A (2007) Role of caspases in CD95L- and TRAIL-induced non-apoptotic signalling in pancreatic tumour cells. Cell Signal 19:1172–1184PubMedCrossRefGoogle Scholar
  19. 19.
    Hinz S, Trauzold A, Boenicke L, Sandberg C, Beckmann S, Bayer E, Walczak H, Kalthoff H, Ungefroren H (2000) Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene 19:5477–5486PubMedCrossRefGoogle Scholar
  20. 20.
    Trauzold A, Schmiedel S, Roder C, Tams C, Christgen M, Oestern S, Arlt A, Westphal S, Kapischke M, Ungefroren H et al (2003) Multiple and synergistic deregulations of apoptosis-controlling genes in pancreatic carcinoma cells. Br J Cancer 89:1714–1721PubMedCrossRefGoogle Scholar
  21. 21.
    Trauzold A, Roder C, Sipos B, Karsten K, Arlt A, Jiang P, Martin-Subero JI, Siegmund D, Muerkoster S, Pagerols-Raluy L et al (2005) CD95 and TRAF2 promote invasiveness of pancreatic cancer cells. Faseb J 19:620–622PubMedGoogle Scholar
  22. 22.
    Trauzold A, Siegmund D, Schniewind B, Sipos B, Egberts J, Zorenkov D, Emme D, Roder C, Kalthoff H, Wajant H (2006) TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25:7434–7439PubMedCrossRefGoogle Scholar
  23. 23.
    Humphreys RC, Halpern W (2008) Trail receptors: targets for cancer therapy. Adv Exp Med Biol 615:127–158PubMedCrossRefGoogle Scholar
  24. 24.
    Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, Heinrich M, Merkel O, Ehrenschwender M, Adam D et al (2004) Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21:415–428PubMedCrossRefGoogle Scholar
  25. 25.
    Scaffidi C, Medema JP, Krammer PH, Peter ME (1997) FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 272:26953–26958PubMedCrossRefGoogle Scholar
  26. 26.
    Dhein J, Daniel PT, Trauth BC, Oehm A, Möller P, Krammer PH (1992) Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J Immunol 149:3166–3173PubMedGoogle Scholar
  27. 27.
    Schafer H, Diebel J, Arlt A, Trauzold A, Schmidt WE (1998) The promoter of human p22/PACAP response gene 1 (PRG1) contains functional binding sites for the p53 tumor suppressor and for NF–kappaB. FEBS let 436:139–143CrossRefGoogle Scholar
  28. 28.
    Kelley RF, Totpal K, Lindstrom SH, Mathieu M, Billeci K, Deforge L, Pai R, Hymowitz SG, Ashkenazi A (2005) Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J Biol Chem 280:2205–2212PubMedCrossRefGoogle Scholar
  29. 29.
    MacFarlane M, Inoue S, Kohlhaas SL, Majid A, Harper N, Kennedy DB, Dyer MJ, Cohen GM (2005) Chronic lymphocytic leukemic cells exhibit apoptotic signaling via TRAIL-R1. Cell Ceath Differ 12:773–782CrossRefGoogle Scholar
  30. 30.
    Wajant H, Moosmayer D, Wuest T, Bartke T, Gerlach E, Schonherr U, Peters N, Scheurich P, Pfizenmaier K (2001) Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20:4101–4106PubMedCrossRefGoogle Scholar
  31. 31.
    Merino D, Lalaoui N, Morizot A, Schneider P, Solary E, Micheau O (2006) Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 26:7046–7055PubMedCrossRefGoogle Scholar
  32. 32.
    Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, Lee D, von Goetz M, Yee SF, Totpal K et al (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13:1070–1077PubMedCrossRefGoogle Scholar
  33. 33.
    Shi RX, Ong CN, Shen HM (2005) Protein kinase C inhibition and x-linked inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cancer cells. Cancer Res 65:7815–7823PubMedCrossRefGoogle Scholar
  34. 34.
    Harper N, Hughes MA, Farrow SN, Cohen GM, MacFarlane M (2003) Protein kinase C modulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by targeting the apical events of death receptor signaling. J Biol Chem 278:44338–44347PubMedCrossRefGoogle Scholar
  35. 35.
    Sarker M, Ruiz-Ruiz C, Lopez-Rivas A (2001) Activation of protein kinase C inhibits TRAIL-induced caspases activation, mitochondrial events and apoptosis in a human leukemic T cell line. Cell Death Differ 8:172–181PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Johannes Lemke
    • 1
  • Andreas Noack
    • 1
  • Dieter Adam
    • 2
  • Vladimir Tchikov
    • 2
  • Uwe Bertsch
    • 2
  • Christian Röder
    • 1
  • Stefan Schütze
    • 2
  • Harald Wajant
    • 3
  • Holger Kalthoff
    • 1
  • Anna Trauzold
    • 1
    Email author
  1. 1.Division of Molecular Oncology, Institute of Experimental Cancer Research, Comprehensive Cancer Center NorthUK S-HKielGermany
  2. 2.Institute of ImmunologyUK S-HKielGermany
  3. 3.Division of Molecular Internal Medicine, Department of Internal Medicine IIUniversity Hospital WürzburgWürzburgGermany

Personalised recommendations