Advertisement

Journal of Molecular Medicine

, Volume 88, Issue 7, pp 709–717 | Cite as

Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker

  • Hui Zhou
  • Jun-Ming GuoEmail author
  • Yan-Ru Lou
  • Xin-Jun Zhang
  • Fa-De Zhong
  • Zhen Jiang
  • Jia Cheng
  • Bing-Xiu XiaoEmail author
Original article

Abstract

Recently, the detection of occult cancer cells in peripheral blood has received a great deal of attention regarding the prediction of postoperative cancer recurrence and for novel strategies of adjuvant therapy. The aim of this study was to establish a new molecular diagnostic method of detecting circulating tumor cells. Gastric cancer SGC-7901 cells in 2 ml blood from healthy volunteers were serially diluted. Additional peripheral blood samples were collected from 90 patients and 27 healthy volunteers. Real-time reverse transcription-polymerase chain reaction was used to detect the levels of microRNA-106a (miR-106a) and microRNA-17 (miR-17). Receiver operating characteristics (ROC) curves were constructed. In recovery experiments, a significant correlation between the number of cancer cells and the levels of both miR-106a (r = −0.906, p = 0.037) and miR-17 (r = −0.912, p = 0.031) was found. In preoperative and postoperative patient groups, miR-106a and miR-17 levels were significantly higher than those in controls. The areas under the ROC curve for miR-106a, miR-17, and combination were 0.684 (p = 0.0066), 0.743 (p = 0.0001), and 0.741 (p = 0.0002), respectively. Our results indicate that the detection of miRNA in peripheral blood may be a novel tool for monitoring circulating tumor cells in patients with gastric cancers.

Keywords

Gastric cancer microRNA Gene diagnosis Circulating tumor cells Peripheral blood 

Notes

Acknowledgments

This work was supported by the Ningbo Natural Science Foundation (Nos. 2009A610134, 201001A6010002, 201001A6010003), Zhejiang Province Research Project (Nos. 2008C33020 and 2008F70052), Natural Science Foundation of Zhejiang Province (Nos. Y207240 and Y207244), National Natural Science Foundation of China (No. 30872420), Post-graduate Innovative Research Project in Zhejiang Province (No. YK2008046), and K. C. Wong Magna Fund in Ningbo University.

Disclosure of potential conflict of interests

The authors declare that they have no conflicting interests related to this study.

References

  1. 1.
    Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676CrossRefPubMedGoogle Scholar
  2. 2.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531CrossRefPubMedGoogle Scholar
  3. 3.
    Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450CrossRefPubMedGoogle Scholar
  4. 4.
    Perera RJ, Ray A (2007) MicroRNAs in the search for understanding human diseases. BioDrugs 21:97–104CrossRefPubMedGoogle Scholar
  5. 5.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529CrossRefPubMedGoogle Scholar
  6. 6.
    Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990-2020: global burden of disease study. Lancet 349:1498–1504CrossRefPubMedGoogle Scholar
  7. 7.
    Bandres E, Bitarte N, Arias F, Agorreta J, Fortes P, Agirre X, Zarate R, Diaz-Gonzalez JA, Ramirez N, Sola JJ et al (2009) microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res 15:2281–2290CrossRefPubMedGoogle Scholar
  8. 8.
    Jiang Z, Guo J, Xiao B, Miao Y, Huang R, Li D, Zhang Y (2010) Increased expression of miR-421 in human gastric carcinoma and its clinical association. J Gastroenterol 45:17–23CrossRefPubMedGoogle Scholar
  9. 9.
    Tong AW, Nemunaitis J (2008) Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther 15:341–355CrossRefPubMedGoogle Scholar
  10. 10.
    Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632CrossRefPubMedGoogle Scholar
  11. 11.
    Xiao B, Guo J, Miao Y, Jiang Z, Huan R, Zhang Y, Li D, Zhong J (2009) Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta 400:97–102CrossRefPubMedGoogle Scholar
  12. 12.
    Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286CrossRefPubMedGoogle Scholar
  13. 13.
    Landais S, Landry S, Legault P, Rassart E (2007) Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 67:5699–5707CrossRefPubMedGoogle Scholar
  14. 14.
    Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 24:652–657CrossRefPubMedGoogle Scholar
  15. 15.
    Koga T, Tokunaga E, Sumiyoshi Y, Oki E, Oda S, Takahashi I, Kakeji Y, Baba H, Maehara Y (2008) Detection of circulating gastric cancer cells in peripheral blood using real time quantitative RT-PCR. Hepatogastroenterology 55:1131–1135PubMedGoogle Scholar
  16. 16.
    Sobin LH, Wittekind C (1997) International Union against Cancer. TNM classification of malignant tumours, 5th edn. Wiley, New York, pp 59–62Google Scholar
  17. 17.
    Solcia E, Klöppel G, Sobin L, Williams E (2000) Endocrine tumours of the gastrointestinal tract. In: Solcia E (ed) Histological typing of endocrine tumours. Springer, Heidelberg, pp 61–68Google Scholar
  18. 18.
    Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704CrossRefPubMedGoogle Scholar
  19. 19.
    Kim MA, Lee HS, Yang HK, Kim WH (2004) Cytokeratin expression profile in gastric carcinomas. Hum Pathol 35:576–581CrossRefPubMedGoogle Scholar
  20. 20.
    Bachtiar I, Santoso JM, Atmanegara B, Gani RA, Hasan I, Lesmana LA, Sulaiman A, Gu J, Tai S (2009) Combination of alpha-1-acid glycoprotein and alpha-fetoprotein as an improved diagnostic tool for hepatocellular carcinoma. Clin Chim Acta 399:97–101CrossRefPubMedGoogle Scholar
  21. 21.
    Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436CrossRefPubMedGoogle Scholar
  22. 22.
    Shen YL, Jiang YG, Greenlee AR, Zhou LL, Liu LH (2009) MicroRNA expression profiles and miR-10a target in anti-benzo[a] pyrene-7, 8-diol-9, 10-epoxide-transformed human 16HBE cells. Biomed Environ Sci 22:14–21CrossRefPubMedGoogle Scholar
  23. 23.
    Busacca S, Germano S, De Cecco L, Rinaldi M, Comoglio F, Favero F, Murer B, Mutti L, Pierotti M, Gaudino G (2009) MicroRNA Signature of Malignant Mesothelioma with Potential Diagnostic and Prognostic Implications. Am J Respir Cell Mol Biol. doi: 10.1165/rcmb.2009-0060OC PubMedGoogle Scholar
  24. 24.
    Diaz R, Silva J, Garcia JM, Lorenzo Y, Garcia V, Pena C, Rodriguez R, Munoz C, Garcia F, Bonilla F et al (2008) Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer 47:794–802CrossRefPubMedGoogle Scholar
  25. 25.
    Northcott PA, Fernandez LA, Hagan JP, Ellison DW, Grajkowska W, Gillespie Y, Grundy R, Van Meter T, Rutka JT, Croce CM et al (2009) The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Res 69:3249–3255CrossRefPubMedGoogle Scholar
  26. 26.
    Chim SS, Shing TK, Hung EC, Leung TY, Lau TK, Chiu RW, Lo YM (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54:482–490CrossRefPubMedGoogle Scholar
  27. 27.
    Lodes MJ, Caraballo M, Suciu D, Munro S, Kumar A, Anderson B (2009) Detection of cancer with serum miRNAs on an oligonucleotide microarray. PLoS ONE 4:e6229CrossRefPubMedGoogle Scholar
  28. 28.
    White H, Griffiths JD (1976) Circulating malignant cells and fibrinolysis during resection of colorectal cancer. Proc R Soc Med 69:467–469CrossRefPubMedGoogle Scholar
  29. 29.
    Ghossein RA, Rosai J (1996) Polymerase chain reaction in the detection of micrometastases and circulating tumor cells. Cancer 78:10–16CrossRefPubMedGoogle Scholar
  30. 30.
    Pelkey TJ, Frierson HF Jr, Bruns DE (1996) Molecular and immunological detection of circulating tumor cells and micrometastases from solid tumors. Clin Chem 42:1369–1381PubMedGoogle Scholar
  31. 31.
    Guo J, Xiao B, Zhang X, Jin Z, Chen J, Qin L, Mao X, Shen G, Chen H, Liu Z (2004) Combined use of positive and negative immunomagnetic isolation followed by real-time RT-PCR for detection of the circulating tumor cells in patients with colorectal cancers. J Mol Med 82:768–774CrossRefPubMedGoogle Scholar
  32. 32.
    Guo J, Yao F, Lou Y, Xu C, Xiao B, Zhou W, Chen J, Hu Y, Liu Z (2007) Detecting carcinoma cells in peripheral blood of patients with hepatocellular carcinoma by immunomagnetic beads and rt-PCR. J Clin Gastroenterol 41:783–788CrossRefPubMedGoogle Scholar
  33. 33.
    Lambrechts AC, van 't Veer LJ, Rodenhuis S (1998) The detection of minimal numbers of contaminating epithelial tumor cells in blood or bone marrow: use, limitations and future of RNA-based methods. Ann Oncol 9:1269–1276CrossRefPubMedGoogle Scholar
  34. 34.
    Vlems FA, Diepstra JH, Cornelissen IM, Ruers TJ, Ligtenberg MJ, Punt CJ, van Krieken JH, Wobbes T, van Muijen GN (2002) Limitations of cytokeratin 20 RT-PCR to detect disseminated tumour cells in blood and bone marrow of patients with colorectal cancer: expression in controls and downregulation in tumour tissue. Mol Pathol 55:156–163CrossRefPubMedGoogle Scholar
  35. 35.
    Nelson KM, Weiss GJ (2008) MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7:3655–3660CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hui Zhou
    • 1
  • Jun-Ming Guo
    • 1
    Email author
  • Yan-Ru Lou
    • 2
  • Xin-Jun Zhang
    • 3
  • Fa-De Zhong
    • 1
  • Zhen Jiang
    • 1
  • Jia Cheng
    • 1
  • Bing-Xiu Xiao
    • 1
    Email author
  1. 1.Ningbo University School of MedicineNingboChina
  2. 2.Ningbo No. 1 Hospital and the Affiliated HospitalNingbo University School of MedicineNingboChina
  3. 3.The Affiliated HospitalNingbo University School of MedicineNingboChina

Personalised recommendations