Journal of Molecular Medicine

, Volume 88, Issue 4, pp 339–350 | Cite as

Dynamin 2 and human diseases

  • Anne-Cécile Durieux
  • Bernard Prudhon
  • Pascale Guicheney
  • Marc Bitoun
Review

Abstract

Dynamin 2 (DNM2) mutations cause autosomal dominant centronuclear myopathy, a rare form of congenital myopathy, and intermediate and axonal forms of Charcot–Marie-Tooth disease, a peripheral neuropathy. DNM2 is a large GTPase mainly involved in membrane trafficking through its function in the formation and release of nascent vesicles from biological membranes. DNM2 participates in clathrin-dependent and clathrin-independent endocytosis and intracellular membrane trafficking (from endosomes and Golgi apparatus). Recent studies have also implicated DNM2 in exocytosis. DNM2 belongs to the machinery responsible for the formation of vesicles and regulates the cytoskeleton providing intracellular vesicle transport. In addition, DNM2 tightly interacts with and is involved in the regulation of actin and microtubule networks, independent from membrane trafficking processes. We summarize here the molecular, biochemical, and functional data on DNM2 and discuss the possible pathophysiological mechanisms via which DNM2 mutations can lead to two distinct neuromuscular disorders.

Keywords

Dynamin 2 Centronuclear myopathy Charcot–Marie-Tooth neuropathy Endocytosis Cytoskeleton Monogenic disease Biology 

Abbreviations

PI4,5P2

phophatidylinositol 4,5-bisphosphate

PI3,4,5P3

phophatidylinositol 3,4,5-triphosphate

PI3,4P2

phophatidylinositol 3,4-bisphosphate

PI4P

phophatidylinositol 4-monophosphate

PI3P

phophatidylinositol 3-monophosphate

LPA

lysophosphatidic acid

GLUT4

glucose transporter 4

TGN

trans-Golgi network

BAR

Bin1/Amphiphysin/RVS167

References

  1. 1.
    Heymann JA, Hinshaw JE (2009) Dynamins at a glance. J Cell Sci 122:3427–3431PubMedGoogle Scholar
  2. 2.
    Zuchner S, Noureddine M, Kennerson M, Verhoeven K, Claeys K, De Jonghe P, Merory J, Oliveira SA, Speer MC, Stenger JE, Walizada G, Zhu D, Pericak-Vance MA, Nicholson G, Timmerman V, Vance JM (2005) Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot–Marie-Tooth disease. Nat Genet 37:289–294PubMedGoogle Scholar
  3. 3.
    Bitoun M, Maugenre S, Jeannet PY, Lacène E, Ferrer X, Laforêt P, Martin JJ, Laporte J, Lochmuller H, Beggs AH, Fardeau M, Eymard B, Romero NB, Guicheney P (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nature Genet 37:1207–1209PubMedGoogle Scholar
  4. 4.
    Sontag JM, Fykse EM, Ushkaryov Y, Liu JP, Robinson PJ, Sudhof TC (1994) Differential expression and regulation of multiple dynamins. J Biol Chem 269:4547–4554PubMedGoogle Scholar
  5. 5.
    Lin HC, Barylko B, Achiriloaie M, Albanesi JP (1997) Phosphatidylinositol (4, 5)-bisphosphate-dependent activation of dynamins I and II lacking the proline/arginine-rich domains. J Biol Chem 272:25999–26004PubMedGoogle Scholar
  6. 6.
    Rappoport JZ, Simon SM (2003) Real-time analysis of clathrin-mediated endocytosis during cell migration. J Cell Sci 116:847–855PubMedGoogle Scholar
  7. 7.
    Artalejo CR, Elhamdani A, Palfrey HC (2002) Sustained stimulation shifts the mechanism of endocytosis from dynamin-1-dependent rapid endocytosis to clathrin- and dynamin-2-mediated slow endocytosis in chromaffin cells. Proc Natl Acad Sci USA 99:6358–6363PubMedGoogle Scholar
  8. 8.
    Cook TA, Urrutia R, McNiven MA (1994) Identification of dynamin 2, an isoform ubiquitously expressed in rat tissues. Proc Natl Acad Sci USA 91:644–648PubMedGoogle Scholar
  9. 9.
    Diatloff-Zito C, Gordon AJ, Duchaud E, Merlin G (1995) Isolation of an ubiquitously expressed cDNA encoding human dynamin II, a member of the large GTP-binding protein family. Gene 163:301–306PubMedGoogle Scholar
  10. 10.
    Cao H, Garcia F, McNiven MA (1998) Differential distribution of dynamin isoforms in mammalian cells. Mol Biol Cell 9:2595–2609PubMedGoogle Scholar
  11. 11.
    Bitoun M, Durieux AC, Prudhon B, Bevilacqua JA, Herledan A, Sakanyan V, Urtizberea A, Cartier L, Romero NB, Guicheney P (2009) Dynamin 2 mutations associated with human diseases impair clathrin-mediated receptor endocytosis. Hum Mutat 30:1419–1427PubMedGoogle Scholar
  12. 12.
    Smirnova E, Shurland DL, Newman-Smith ED, Pishvaee B, van der Bliek AM (1999) A model for dynamin self-assembly based on binding between three different protein domains. J Biol Chem 274:14942–14947PubMedGoogle Scholar
  13. 13.
    Chen YJ, Zhang P, Egelman EH, Hinshaw JE (2004) The stalk region of dynamin drives the constriction of dynamin tubes. Nat Struct Mol Biol 11:574–575PubMedGoogle Scholar
  14. 14.
    Dong J, Misselwitz R, Welfle H, Westermann P (2000) Expression and purification of dynamin II domains and initial studies on structure and function. Protein Expr Purif 20:314–323PubMedGoogle Scholar
  15. 15.
    Klein DE, Lee A, Frank DW, Marks MS, Lemmon MA (1998) The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J Biol Chem 273:27725–27733PubMedGoogle Scholar
  16. 16.
    Sever S, Muhlberg AB, Schmid SL (1999) Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis. Nature 398:481–486PubMedGoogle Scholar
  17. 17.
    Warnock DE, Baba T, Schmid SL (1997) Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronal dynamin-I. Mol Biol Cell 8:2553–2562PubMedGoogle Scholar
  18. 18.
    Eccleston JF, Binns DD, Davis CT, Albanesi JP, Jameson DM (2002) Oligomerization and kinetic mechanism of the dynamin GTPase. Eur Biophys J 31:275–282PubMedGoogle Scholar
  19. 19.
    Soulet F, Yarar D, Leonard M, Schmid SL (2005) SNX9 regulates dynamin assembly and is required for efficient clathrin-mediated endocytosis. Mol Biol Cell 16:2058–2067PubMedGoogle Scholar
  20. 20.
    Solomaha E, Palfrey HC (2005) Conformational changes in dynamin on GTP binding and oligomerization reported by intrinsic and extrinsic fluorescence. Biochem J 391:601–611PubMedGoogle Scholar
  21. 21.
    Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD (2004) Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:20392–20400PubMedGoogle Scholar
  22. 22.
    Efendiev R, Yudowski GA, Zwiller J, Leibiger B, Katz AI, Berggren PO, Pedemonte CH, Leibiger IB, Bertorello AM (2002) Relevance of dopamine signals anchoring dynamin-2 to the plasma membrane during Na+, K+-ATPase endocytosis. J Biol Chem 277:44108–44114PubMedGoogle Scholar
  23. 23.
    Kang-Decker N, Cao S, Chatterjee S, Yao J, Egan LJ, Semela D, Mukhopadhyay D, Shah V (2007) Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2. J Cell Sci 120:492–501PubMedGoogle Scholar
  24. 24.
    Sever S, Altintas MM, Nankoe SR, Moller CC, Ko D, Wei C, Henderson J, del Re EC, Hsing L, Erickson A, Cohen CD, Kretzler M, Kerjaschki D, Rudensky A, Nikolic B, Reiser J (2007) Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J Clin Invest 117:2095–2104PubMedGoogle Scholar
  25. 25.
    Cousin MA, Robinson PJ (2000) Ca(2+) influx inhibits dynamin and arrests synaptic vesicle endocytosis at the active zone. J Neurosci 20:949–957PubMedGoogle Scholar
  26. 26.
    Cook TA, Mesa KJ, Gebelein BA, Urrutia RA (1996) Upregulation of dynamin II expression during the acquisition of a mature pancreatic acinar cell phenotype. J Histochem Cytochem 44:1373–1378PubMedGoogle Scholar
  27. 27.
    Cook T, Mesa K, Urrutia R (1996) Three dynamin-encoding genes are differentially expressed in developing rat brain. J Neurochem 67:927–931PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang Q, Purohit V, Yoburn BC (2005) Continuous opioid agonist treatment dose-dependently regulates mu-opioid receptors and dynamin-2 in mouse spinal cord. Synapse 56:123–128PubMedGoogle Scholar
  29. 29.
    Rajashekara V, Patel CN, Patel K, Purohit V, Yoburn BC (2003) Chronic opioid antagonist treatment dose-dependently regulates mu-opioid receptors and trafficking proteins in vivo. Pharmacol Biochem Behav 75:909–913PubMedGoogle Scholar
  30. 30.
    Lundmark R, Carlsson SR (2004) Regulated membrane recruitment of dynamin-2 mediated by sorting nexin 9. J Biol Chem 279:42694–42702PubMedGoogle Scholar
  31. 31.
    Lundmark R, Carlsson SR (2005) Expression and properties of sorting nexin 9 in dynamin-mediated endocytosis. Methods Enzymol 404:545–556PubMedGoogle Scholar
  32. 32.
    Zoncu R, Perera RM, Sebastian R, Nakatsu F, Chen H, Balla T, Ayala G, Toomre D, De Camilli PV (2007) Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4, 5-bisphosphate. Proc Natl Acad Sci USA 104:3793–3798PubMedGoogle Scholar
  33. 33.
    Loerke D, Mettlen M, Yarar D, Jaqaman K, Jaqaman H, Danuser G, Schmid SL (2009) Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol 7:e57PubMedGoogle Scholar
  34. 34.
    Gold ES, Underhill DM, Morrissette NS, Guo J, McNiven MA, Aderem A (1999) Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 190:1849–1856PubMedGoogle Scholar
  35. 35.
    Henley JR, Krueger EW, Oswald BJ, McNiven MA (1998) Dynamin-mediated internalization of caveolae. J Cell Biol 141:85–99PubMedGoogle Scholar
  36. 36.
    Predescu SA, Predescu DN, Timblin BK, Stan RV, Malik AB (2003) Intersectin regulates fission and internalization of caveolae in endothelial cells. Mol Biol Cell 14:4997–5010PubMedGoogle Scholar
  37. 37.
    Cao S, Yao J, McCabe TJ, Yao Q, Katusic ZS, Sessa WC, Shah V (2001) Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function. J Biol Chem 276:14249–14256PubMedGoogle Scholar
  38. 38.
    Sanchez FA, Rana R, Kim DD, Iwahashi T, Zheng R, Lal BK, Gordon DM, Meininger CJ, Duran WN (2009) Internalization of eNOS and NO delivery to subcellular targets determine agonist-induced hyperpermeability. Proc Natl Acad Sci USA 106:6849–6853PubMedGoogle Scholar
  39. 39.
    Cao H, Chen J, Awoniyi M, Henley JR, McNiven MA (2007) Dynamin 2 mediates fluid-phase micropinocytosis in epithelial cells. J Cell Sci 120:4167–4177PubMedGoogle Scholar
  40. 40.
    Liu YW, Surka MC, Schroeter T, Lukiyanchuk V, Schmid SL (2008) Isoform and splice-variant specific functions of dynamin-2 revealed by analysis of conditional knock-out cells. Mol Biol Cell 19:5347–5359PubMedGoogle Scholar
  41. 41.
    Maier O, Knoblich M, Westermann P (1996) Dynamin II binds to the trans-Golgi network. Biochem Biophys Res Commun 223:229–233PubMedGoogle Scholar
  42. 42.
    Jones SM, Howell KE, Henley JR, Cao H, McNiven MA (1998) Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279:573–577PubMedGoogle Scholar
  43. 43.
    Kreitzer G, Marmorstein A, Okamoto P, Vallee R, Rodriguez-Boulan E (2000) Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nat Cell Biol 2:125–127PubMedGoogle Scholar
  44. 44.
    Cao H, Weller S, Orth JD, Chen J, Huang B, Chen JL, Stamnes M, McNiven MA (2005) Actin and Arf1-dependent recruitment of a cortactin–dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol 7:483–492PubMedGoogle Scholar
  45. 45.
    Kessels MM, Dong J, Leibig W, Westermann P, Qualmann B (2006) Complexes of syndapin II with dynamin II promote vesicle formation at the trans-Golgi network. J Cell Sci 119:1504–1516PubMedGoogle Scholar
  46. 46.
    van Dam EM, Stoorvogel W (2002) Dynamin-dependent transferrin receptor recycling by endosome-derived clathrin-coated vesicles. Mol Biol Cell 13:169–182PubMedGoogle Scholar
  47. 47.
    Nicoziani P, Vilhardt F, Llorente A, Hilout L, Courtoy PJ, Sandvig K, van Deurs B (2000) Role for dynamin in late endosome dynamics and trafficking of the cation-independent mannose 6-phosphate receptor. Mol Biol Cell 11:481–495PubMedGoogle Scholar
  48. 48.
    Min L, Leung YM, Tomas A, Watson RT, Gaisano HY, Halban PA, Pessin JE, Hou JC (2007) Dynamin is functionally coupled to insulin granule exocytosis. J Biol Chem 282:33530–33536PubMedGoogle Scholar
  49. 49.
    Arneson LN, Segovis CM, Gomez TS, Schoon RA, Dick CJ, Lou Z, Billadeau DD, Leibson PJ (2008) Dynamin 2 regulates granule exocytosis during NK cell-mediated cytotoxicity. J Immunol 181:6995–7001PubMedGoogle Scholar
  50. 50.
    Di A, Nelson DJ, Bindokas V, Brown ME, Libunao F, Palfrey HC (2003) Dynamin regulates focal exocytosis in phagocytosing macrophages. Mol Biol Cell 14:2016–2028PubMedGoogle Scholar
  51. 51.
    Jaiswal JK, Rivera VM, Simon SM (2009) Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell 137:1308–1319PubMedGoogle Scholar
  52. 52.
    Kessels MM, Engqvist-Goldstein AE, Drubin DG, Qualmann B (2001) Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J Cell Biol 153:351–366PubMedGoogle Scholar
  53. 53.
    McNiven MA, Kim L, Krueger EW, Orth JD, Cao H, Wong TW (2000) Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol 151:187–198PubMedGoogle Scholar
  54. 54.
    Schafer DA, Weed SA, Binns D, Karginov AV, Parsons JT, Cooper JA (2002) Dynamin2 and cortactin regulate actin assembly and filament organization. Curr Biol 12:1852–1857PubMedGoogle Scholar
  55. 55.
    Mooren OL, Kotova TI, Moore AJ, Schafer DA (2009) Dynamin2 GTPase and cortactin remodel actin filaments. J Biol Chem 284:23995–24005PubMedGoogle Scholar
  56. 56.
    Krueger EW, Orth JD, Cao H, McNiven MA (2003) A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol Biol Cell 14:1085–1096PubMedGoogle Scholar
  57. 57.
    Schlunck G, Damke H, Kiosses WB, Rusk N, Symons MH, Waterman-Storer CM, Schmid SL, Schwartz MA (2004) Modulation of Rac localization and function by dynamin. Mol Biol Cell 15:256–267PubMedGoogle Scholar
  58. 58.
    Ezratty EJ, Partridge MA, Gundersen GG (2005) Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol 7:581–590PubMedGoogle Scholar
  59. 59.
    Vassilieva EV, Gerner-Smidt K, Ivanov AI, Nusrat A (2008) Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 295:G965–G976PubMedGoogle Scholar
  60. 60.
    Ochoa GC, Slepnev VI, Neff L, Ringstad N, Takei K, Daniell L, Kim W, Cao H, McNiven M, Baron et a (2000) A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 150:377–389Google Scholar
  61. 61.
    Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R (2003) Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell 14:1074–1084PubMedGoogle Scholar
  62. 62.
    Yoo J, Jeong MJ, Cho HJ, Oh ES, Han MY (2005) Dynamin II interacts with syndecan-4, a regulator of focal adhesion and stress-fiber formation. Biochem Biophys Res Commun 328:424–431PubMedGoogle Scholar
  63. 63.
    Tanabe K, Takei K (2009) Dynamic instability of microtubules requires dynamin 2 and is impaired in a Charcot–Marie-Tooth mutant. J Cell Biol 185:939–948PubMedGoogle Scholar
  64. 64.
    Hamao K, Morita M, Hosoya H (2009) New function of the proline rich domain in dynamin-2 to negatively regulate its interaction with microtubules in mammalian cells. Exp Cell Res 315:1336–1345PubMedGoogle Scholar
  65. 65.
    Thompson HM, Cao H, Chen J, Euteneuer U, McNiven MA (2004) Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion. Nat Cell Biol 6:335–342PubMedGoogle Scholar
  66. 66.
    Thompson HM, Skop AR, Euteneuer U, Meyer BJ, McNiven MA (2002) The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr Biol 12:2111–2117PubMedGoogle Scholar
  67. 67.
    Fish KN, Schmid SL, Damke H (2000) Evidence that dynamin-2 functions as a signal-transducing GTPase. J Cell Biol 150:145–154PubMedGoogle Scholar
  68. 68.
    Kashiwakura Y, Watanabe M, Kusumi N, Sumiyoshi K, Nasu Y, Yamada H, Sawamura T, Kumon H, Takei K, Daida H (2004) Dynamin-2 regulates oxidized low-density lipoprotein-induced apoptosis of vascular smooth muscle cell. Circulation 110:3329–3334PubMedGoogle Scholar
  69. 69.
    Soulet F, Schmid SL, Damke H (2006) Domain requirements for an endocytosis-independent, isoform-specific function of dynamin-2. Exp Cell Res 312:3539–3545PubMedGoogle Scholar
  70. 70.
    Atapattu DN, Albrecht RM, McClenahan DJ, Czuprynski CJ (2008) Dynamin-2-dependent targeting of Mannheimia haemolytica leukotoxin to mitochondrial cyclophilin D in bovine lymphoblastoid cells. Infect Immun 76:5357–5365PubMedGoogle Scholar
  71. 71.
    Ivanov VN, Ronai Z, Hei TK (2006) Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem 281:1840–1852PubMedGoogle Scholar
  72. 72.
    Kao AW, Yang C, Pessin JE (2000) Functional comparison of the role of dynamin 2 splice variants on GLUT-4 endocytosis in 3T3L1 adipocytes. Am J Physiol Endoc M 278:E825–E831Google Scholar
  73. 73.
    Yao Q, Chen J, Cao H, Orth JD, McCaffery JM, Stan RV, McNiven MA (2005) Caveolin-1 interacts directly with dynamin-2. J Mol Biol 348:491–501PubMedGoogle Scholar
  74. 74.
    Fabrizi GM, Ferrarini M, Cavallaro T, Cabrini I, Cerini R, Bertolasi L, Rizzuto N (2007) Two novel mutations in dynamin-2 cause axonal Charcot–Marie-Tooth disease. Neurology 69:291–295PubMedGoogle Scholar
  75. 75.
    Bitoun M, Stojkovic T, Prudhon B, Maurage CA, Latour P, Vermersch P, Guicheney P (2008) A novel mutation in the dynamin 2 gene in a Charcot–Marie-Tooth type 2 patient: clinical and pathological findings. Neuromuscul Disord 18:334–338PubMedGoogle Scholar
  76. 76.
    Gallardo E, Claeys KG, Nelis E, Garcia A, Canga A, Combarros O, Timmerman V, De Jonghe P, Berciano J (2008) Magnetic resonance imaging findings of leg musculature in Charcot–Marie-Tooth disease type 2 due to dynamin 2 mutation. J Neurol 255:986–992PubMedGoogle Scholar
  77. 77.
    Claeys KG, Zuchner S, Kennerson M, Berciano J, Garcia A, Verhoeven K, Storey E, Merory JR, Bienfait HM, Lammens M, Nelis E, Baets J, De Vriendt E, Berneman ZN, De Veuster I, Vance JM, Nicholson G, Timmerman V, De Jonghe P (2009) Phenotypic spectrum of dynamin 2 mutations in Charcot–Marie-Tooth neuropathy. Brain 132:1741–1752PubMedGoogle Scholar
  78. 78.
    Echaniz-Laguna A, Nicot AS, Carre S, Franques J, Tranchant C, Dondaine N, Biancalana V, Mandel JL, Laporte J (2007) Subtle central and peripheral nervous system abnormalities in a family with centronuclear myopathy and a novel dynamin 2 gene mutation. Neuromuscul Disord 17:955–959PubMedGoogle Scholar
  79. 79.
    Bitoun M, Bevilacqua JA, Prudhon B, Maugenre S, Taratuto AL, Monges S, Lubieniecki F, Cances C, Uro-Coste E, Mayer M, Fardeau M, Romero NB, Guicheney P (2007) Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 62:666–670PubMedGoogle Scholar
  80. 80.
    Bitoun M, Bevilacqua JA, Eymard B, Prudhon B, Fardeau M, Guicheney P, Romero NB (2009) A new centronuclear myopathy phenotype due to a novel dynamin 2 mutation. Neurology 72:93–95PubMedGoogle Scholar
  81. 81.
    Fischer D, Herasse M, Bitoun M, Barragán-Campos HM, Chiras J, Laforêt P, Fardeau M, Eymard B, Guicheney P, Romero NB (2006) Characterization of the muscle involvement in dynamin 2- related centronuclear myopathy. Brain 129:1463–1469PubMedGoogle Scholar
  82. 82.
    Aidaralieva NJ, Kamino K, Kimura R, Yamamoto M, Morihara T, Kazui H, Hashimoto R, Tanaka T, Kudo T, Kida T, Okuda J, Uema T, Yamagata H, Miki T, Akatsu H, Kosaka K, Takeda M (2008) Dynamin 2 gene is a novel susceptibility gene for late-onset Alzheimer disease in non-APOE-epsilon4 carriers. J Hum Genet 53:296–302PubMedGoogle Scholar
  83. 83.
    Kamagata E, Kudo T, Kimura R, Tanimukai H, Morihara T, Sadik MG, Kamino K, Takeda M (2009) Decrease of dynamin 2 levels in late-onset Alzheimer’s disease alters Abeta metabolism. Biochem Biophys Res Commun 379:691–695PubMedGoogle Scholar
  84. 84.
    Jeannet PY, Bassez G, Eymard B, Laforet P, Urtizberea JA, Rouche A, Guicheney P, Fardeau M, Romero NB (2004) Clinical and histologic findings in autosomal centronuclear myopathy. Neurology 62:1484–1490PubMedGoogle Scholar
  85. 85.
    Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, Kingston H, Garnier JM, Biancalana V, Oldfors A, Mandel JL, Laporte J (2007) Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39:1134–1139PubMedGoogle Scholar
  86. 86.
    Morris NR (2003) Nuclear positioning: the means is at the ends. Curr Opin Cell Biol 15:54–59PubMedGoogle Scholar
  87. 87.
    Starr DA, Han M (2003) ANChors away: an actin based mechanism of nuclear positioning. J Cell Sci 116:211–216PubMedGoogle Scholar
  88. 88.
    Shy ME (2004) Charcot–Marie-Tooth disease: an update. Curr Opin Neurol 17:579–585PubMedGoogle Scholar
  89. 89.
    Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26–38PubMedGoogle Scholar
  90. 90.
    Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, Wenk MR, De Camilli P (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193–1196PubMedGoogle Scholar
  91. 91.
    Razzaq A, Robinson IM, McMahon HT, Skepper JN, Su Y, Zelhof AC, Jackson AP, Gay NJ, O’Kane CJ (2001) Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in drosophila. Genes Dev 15:2967–2979PubMedGoogle Scholar
  92. 92.
    Buj-Bello A, Fougerousse F, Schwab Y, Messaddeq N, Spehner D, Pierson CR, Durand M, Kretz C, Danos O, Douar AM, Beggs AH, Schultz P, Montus M, Denefle P, Mandel JL (2008) AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet 17:2132–2143PubMedGoogle Scholar
  93. 93.
    Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372PubMedGoogle Scholar
  94. 94.
    Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, Laporte J, Jacquemond V, Buj-Bello A (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci USA 106:18763–18768PubMedGoogle Scholar
  95. 95.
    Onabajo OO, Seeley MK, Kale A, Qualmann B, Kessels M, Han J, Tan TH, Song W (2008) Actin-binding protein 1 regulates B cell receptor-mediated antigen processing and presentation in response to B cell receptor activation. J Immunol 180:6685–6695PubMedGoogle Scholar
  96. 96.
    Nakanishi A, Abe T, Watanabe M, Takei K, Yamada H (2008) Dynamin 2 cooperates with amphiphysin 1 in phagocytosis in sertoli cells. Acta Med Okayama 62:385–391PubMedGoogle Scholar
  97. 97.
    Kojima C, Hashimoto A, Yabuta I, Hirose M, Hashimoto S, Kanaho Y, Sumimoto H, Ikegami T, Sabe H (2004) Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO J 23:4413–4422PubMedGoogle Scholar
  98. 98.
    Turpin E, Russo-Marie F, Dubois T, de Paillerets C, Alfsen A, Bomsel M (1998) In adrenocortical tissue, annexins II and VI are attached to clathrin coated vesicles in a calcium-independent manner. Biochim Biophys Acta 1402:115–130PubMedGoogle Scholar
  99. 99.
    Lu HA, Sun TX, Matsuzaki T, Yi XH, Eswara J, Bouley R, McKee M, Brown D (2007) Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J Biol Chem 282:28721–28732PubMedGoogle Scholar
  100. 100.
    Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52:445–459PubMedGoogle Scholar
  101. 101.
    Tosoni D, Cestra G (2009) CAP (Cbl associated protein) regulates receptor-mediated endocytosis. FEBS Lett 583:293–300PubMedGoogle Scholar
  102. 102.
    Lie PP, Xia W, Wang CQ, Mruk DD, Yan HH, Wong CH, Lee WM, Cheng CY (2006) Dynamin II interacts with the cadherin- and occludin-based protein complexes at the blood-testis barrier in adult rat testes. J Endocrinol 191:571–586PubMedGoogle Scholar
  103. 103.
    Kim YN, Bertics PJ (2002) The endocytosis-linked protein dynamin associates with caveolin-1 and is tyrosine phosphorylated in response to the activation of a noninternalizing epidermal growth factor receptor mutant. Endocrinology 143:1726–1731PubMedGoogle Scholar
  104. 104.
    Singleton PA, Salgia R, Moreno-Vinasco L, Moitra J, Sammani S, Mirzapoiazova T, Garcia JG (2007) CD44 regulates hepatocyte growth factor-mediated vascular integrity. Role of c-Met, Tiam1/Rac1, dynamin 2, and cortactin. J Biol Chem 282:30643–30657PubMedGoogle Scholar
  105. 105.
    Bruzzaniti A, Neff L, Sanjay A, Horne WC, De Camilli P, Baron R (2005) Dynamin forms a Src kinase-sensitive complex with Cbl and regulates podosomes and osteoclast activity. Mol Biol Cell 16:3301–3313PubMedGoogle Scholar
  106. 106.
    Hartig SM, Ishikura S, Hicklen RS, Feng Y, Blanchard EG, Voelker KA, Pichot CS, Grange RW, Raphael RM, Klip A, Corey SJ (2009) The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and dynamin-2. J Cell Sci 122:2283–2291PubMedGoogle Scholar
  107. 107.
    Zhao L, Shi X, Li L, Miller DJ (2007) Dynamin 2 associates with complexins and is found in the acrosomal region of mammalian sperm. Mol Reprod Dev 74:750–757PubMedGoogle Scholar
  108. 108.
    Okamoto PM, Herskovits JS, Vallee RB (1997) Role of the basic, proline-rich region of dynamin in Src homology 3 domain binding and endocytosis. J Biol Chem 272:11629–11635PubMedGoogle Scholar
  109. 109.
    Cao S, Yao J, Shah V (2003) The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function. J Biol Chem 278:5894–5901PubMedGoogle Scholar
  110. 110.
    Sengar AS, Wang W, Bishay J, Cohen S, Egan SE (1999) The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J 18:1159–1171PubMedGoogle Scholar
  111. 111.
    Kamioka Y, Fukuhara S, Sawa H, Nagashima K, Masuda M, Matsuda M, Mochizuki N (2004) A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. J Biol Chem 279:40091–40099PubMedGoogle Scholar
  112. 112.
    Tsujita K, Suetsugu S, Sasaki N, Furutani M, Oikawa T, Takenawa T (2006) Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172:269–279PubMedGoogle Scholar
  113. 113.
    Kharbanda S, Saleem A, Yuan Z, Emoto Y, Prasad KV, Kufe D (1995) Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp 125FAK and dynamin. Proc Natl Acad Sci USA 92:6132–6136PubMedGoogle Scholar
  114. 114.
    Yoon SY, Koh WS, Lee MK, Park YM, Han MY (1997) Dynamin II associates with Grb2 SH3 domain in Ras transformed NIH3T3 cells. Biochem Biophys Res Commun 234:539–543PubMedGoogle Scholar
  115. 115.
    Gorska MM, Cen O, Liang Q, Stafford SJ, Alam R (2006) Differential regulation of interleukin 5-stimulated signaling pathways by dynamin. J Biol Chem 281:14429–14439PubMedGoogle Scholar
  116. 116.
    Xin X, Rabiner CA, Mains RE, Eipper BA (2009) Kalirin12 interacts with dynamin. BMC Neurosci 10:61PubMedGoogle Scholar
  117. 117.
    Bhattacharya R, Kang-Decker N, Hughes DA, Mukherjee P, Shah V, McNiven MA, Mukhopadhyay D (2005) Regulatory role of dynamin-2 in VEGFR-2/KDR-mediated endothelial signaling. FASEB J 19:1692–1694PubMedGoogle Scholar
  118. 118.
    Rasmussen RK, Rusak J, Price G, Robinson PJ, Simpson RJ, Dorow DS (1998) Mixed-lineage kinase 2-SH3 domain binds dynamin and greatly enhances activation of GTPase by phospholipid. Biochem J 335:119–124PubMedGoogle Scholar
  119. 119.
    Krendel M, Osterweil EK, Mooseker MS (2007) Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett 581:644–650PubMedGoogle Scholar
  120. 120.
    Pizzato M, Helander A, Popova E, Calistri A, Zamborlini A, Palu G, Gottlinger HG (2007) Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef. Proc Natl Acad Sci USA 104:6812–6817PubMedGoogle Scholar
  121. 121.
    Icking A, Matt S, Opitz N, Wiesenthal A, Muller-Esterl W, Schilling K (2005) NOSTRIN functions as a homotrimeric adaptor protein facilitating internalization of eNOS. J Cell Sci 118:5059–5069PubMedGoogle Scholar
  122. 122.
    Wan KF, Sambi BS, Frame M, Tate R, Pyne NJ (2001) The inhibitory gamma subunit of the type 6 retinal cyclic guanosine monophosphate phosphodiesterase is a novel intermediate regulating p42/p44 mitogen-activated protein kinase signaling in human embryonic kidney 293 cells. J Biol Chem 276:37802–37808PubMedGoogle Scholar
  123. 123.
    Park JB, Lee CS, Lee HY, Kim IS, Lee BD, Jang IH, Jung YW, Oh YS, Han MY, Jensen ON, Roepstorff P, Suh PG, Ryu SH (2004) Regulation of phospholipase D2 by GTP-dependent interaction with dynamin. Adv Enzyme Regul 44:249–264PubMedGoogle Scholar
  124. 124.
    Okamoto PM, Gamby C, Wells D, Fallon J, Vallee RB (2001) Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J Biol Chem 276:48458–48465PubMedGoogle Scholar
  125. 125.
    Bruzzaniti A, Neff L, Sandoval A, Du L, Horne WC, Baron R (2009) Dynamin reduces Pyk2 Y402 phosphorylation and SRC binding in osteoclasts. Mol Cell Biol 29:3644–3656PubMedGoogle Scholar
  126. 126.
    Lundmark R, Carlsson SR (2003) Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components. J Biol Chem 278:46772–46781PubMedGoogle Scholar
  127. 127.
    Haberg K, Lundmark R, Carlsson SR (2008) SNX18 is an SNX9 paralog that acts as a membrane tubulator in AP-1-positive endosomal trafficking. J Cell Sci 121:1495–1505PubMedGoogle Scholar
  128. 128.
    Rufer AC, Rumpf J, von Holleben M, Beer S, Rittinger K, Groemping Y (2009) Isoform-selective interaction of the adaptor protein Tks5/FISH with Sos1 and dynamins. J Mol Biol 390:939–950PubMedGoogle Scholar
  129. 129.
    Bertelsen V, Breen K, Sandvig K, Stang E, Madshus IH (2007) The Cbl-interacting protein TULA inhibits dynamin-dependent endocytosis. Exp Cell Res 313:1696–1709PubMedGoogle Scholar
  130. 130.
    Gomez TS, Hamann MJ, McCarney S, Savoy DN, Lubking CM, Heldebrant MP, Labno CM, McKean DJ, McNiven MA, Burkhardt JK, Billadeau DD (2005) Dynamin 2 regulates T cell activation by controlling actin polymerization at the immunological synapse. Nat Immunol 6:261–270PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Anne-Cécile Durieux
    • 1
    • 2
  • Bernard Prudhon
    • 1
    • 2
  • Pascale Guicheney
    • 2
    • 3
  • Marc Bitoun
    • 1
    • 2
    • 4
  1. 1.Inserm, UMR S974, Institut de MyologieGroupe Hospitalier Pitié-SalpêtrièreParisFrance
  2. 2.UPMC Univ Paris 06ParisFrance
  3. 3.Inserm, UMR S956Groupe Hospitalier Pitié-SalpêtrièreParisFrance
  4. 4.UMR_S974, Institut de MyologieGroupe Hospitalier Pitié-SalpêtrièreParisFrance

Personalised recommendations