Journal of Molecular Medicine

, Volume 88, Issue 3, pp 249–265 | Cite as

Leukemia-associated genetic aberrations in mesenchymal stem cells of children with acute lymphoblastic leukemia

  • Shabnam Shalapour
  • Cornelia Eckert
  • Karl Seeger
  • Madlen Pfau
  • Javier Prada
  • Günter Henze
  • Thomas Blankenstein
  • Thomas Kammertoens
Original Article


Childhood acute lymphoblastic leukemia (ALL) is caused by malignant immature lymphocytes. Even though childhood ALL can be cured in a large number of patients, around 20% of the patients suffer a relapse after chemotherapy. The origin of the relapse is unclear at the present time. Given the high plasticity of cells, we searched for leukemia-associated genetic aberrations and immunoglobulin (IG) gene rearrangements in mesenchymal stem cells (MSC) from childhood B-cell precursor ALL patients. MSC from all ten ALL patients analyzed presented the chromosomal translocations that had been detected in leukemia cells (TEL-AML1, E2A-PBX1, or MLL rearrangement). The proportions of translocation-positive MSC varied between 10% and 54% depending on the patients and the time point of analysis. Leukemia-specific IG gene rearrangements were detected in the MSC from three ALL patients. The detection of leukemia-associated genetic aberrations in MSC indicates a clonal relationship between MSC and leukemia cells and suggests their involvement in the pathogenesis and/or pathophysiology of childhood ALL.


Mesenchymal stem cells Fusion genes Childhood acute lymphoblastic leukemia Chromosomal translocations IG gene rearrangements 



The authors are grateful to S. Tuerkmen for metaphase analysis and M. Nagy for chimerism analysis and to R. Marschalek for MLL sequence analysis. We thank the staff members of the ALL-REZ BFM study group, Shidokht Shalapour, T. Schüler, and L. Bastian for their support. This work was supported by the DFG Sonderforschungsbereich TR 36 and the Deutsche Krebshilfe (Bonn, Germany).


Contribution: S.S. designed, performed, analyzed experiments, and wrote the manuscript; T.B. designed, analyzed experiments, and wrote the manuscript; T.K. analyzed experiments and wrote the manuscript; C.E. and M.P. performed experiments; and C.E. and J.P. analyzed experiments and wrote the manuscript. G.H. coordinates the ALL-relapse-BFM study; K.S. and G.H. collected clinical data used in this study and analyzed data.

Conflict of interest disclosure

The authors declare no competing financial interests.

Supplementary material

109_2009_583_MOESM1_ESM.pdf (4.7 mb)
ESM (PDF 4.72 mb)


  1. 1.
    Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354:166–178CrossRefPubMedGoogle Scholar
  2. 2.
    Gaynon PS (2005) Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol 131:579–587CrossRefPubMedGoogle Scholar
  3. 3.
    Greaves MF, Wiemels J (2003) Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 3:639–649CrossRefPubMedGoogle Scholar
  4. 4.
    Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K, Strombeck B, Garwicz S, Bekassy AN, Schmiegelow K, Lausen B, Hokland P, Lehmann S, Juliusson G, Johansson B, Jacobsen SE (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11:630–637CrossRefPubMedGoogle Scholar
  5. 5.
    Hotfilder M, Rottgers S, Rosemann A, Schrauder A, Schrappe M, Pieters R, Jurgens H, Harbott J, Vormoor J (2005) Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+ CD19 cells. Cancer Res 65:1442–1449CrossRefPubMedGoogle Scholar
  6. 6.
    Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A (2009) Expression of CD133 on leukemia-initiating cells in childhood ALL. Blood 113:3287–3296CrossRefPubMedGoogle Scholar
  7. 7.
    Gunsilius E, Duba HC, Petzer AL, Kahler CM, Grunewald K, Stockhammer G, Gabl C, Dirnhofer S, Clausen J, Gastl G (2000) Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 355:1688–1691CrossRefPubMedGoogle Scholar
  8. 8.
    Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S, Green J, Colman S, Piacibello W, Buckle V, Tsuzuki S, Greaves M, Enver T (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 319:336–339CrossRefPubMedGoogle Scholar
  9. 9.
    Nagasawa T (2006) Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 6:107–116CrossRefPubMedGoogle Scholar
  10. 10.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  11. 11.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74CrossRefPubMedGoogle Scholar
  12. 12.
    Mueller LP, Luetzkendorf J, Mueller T, Reichelt K, Simon H, Schmoll HJ (2006) Presence of mesenchymal stem cells in human bone marrow after exposure to chemotherapy: evidence of resistance to apoptosis induction. Stem Cells 24:2753–2765CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49CrossRefPubMedGoogle Scholar
  14. 14.
    Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264CrossRefPubMedGoogle Scholar
  15. 15.
    Cobaleda C, Jochum W, Busslinger M (2007) Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449:473–477CrossRefPubMedGoogle Scholar
  16. 16.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefPubMedGoogle Scholar
  17. 17.
    Beishuizen A, Verhoeven MA, van Wering ER, Hahlen K, Hooijkaas H, van Dongen JJ (1994) Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood 83:2238–2247PubMedGoogle Scholar
  18. 18.
    Gimble JM, Robinson CE, Wu X, Kelly KA (1996) The function of adipocytes in the bone marrow stroma: an update. Bone 19:421–428CrossRefPubMedGoogle Scholar
  19. 19.
    Estrov Z, Talpaz M, Zipf TF, Kantarjian HM, Ku S, Ouspenskaia MV, Hirsch-Ginsberg C, Huh Y, Yee G, Kurzrock R (1996) Role of granulocyte-macrophage colony-stimulating factor in Philadelphia (Ph1)-positive acute lymphoblastic leukemia: studies on two newly established Ph1-positive acute lymphoblastic leukemia cell lines (Z-119 and Z-181). J Cell Physiol 166:618–630CrossRefPubMedGoogle Scholar
  20. 20.
    Thalmeier K, Meissner P, Reisbach G, Hultner L, Mortensen BT, Brechtel A, Oostendorp RA, Dormer P (1996) Constitutive and modulated cytokine expression in two permanent human bone marrow stromal cell lines. Exp Hematol 24:1–10PubMedGoogle Scholar
  21. 21.
    Li LP, Schlag PM, Blankenstein T (1997) Transient expression of SV 40 large T antigen by Cre/LoxP-mediated site-specific deletion in primary human tumor cells. Hum Gene Ther 8:1695–1700CrossRefPubMedGoogle Scholar
  22. 22.
    Martin-Subero JI, Chudoba I, Harder L, Gesk S, Grote W, Novo FJ, Calasanz MJ, Siebert R (2002) Multicolor-FICTION: expanding the possibilities of combined morphologic, immunophenotypic, and genetic single cell analyses. Am J Pathol 161:413–420PubMedGoogle Scholar
  23. 23.
    Pongers-Willemse MJ, Seriu T, Stolz F, d'Aniello E, Gameiro P, Pisa P, Gonzalez M, Bartram CR, Panzer-Grumayer ER, Biondi A, San Miguel JF, van Dongen JJ (1999) Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 13:110–118CrossRefPubMedGoogle Scholar
  24. 24.
    Szczepanski T, van der Velden VH, Hoogeveen PG, de Bie M, Jacobs DC, van Wering ER, van Dongen JJ (2004) Vdelta2-Jalpha rearrangements are frequent in precursor-B-acute lymphoblastic leukemia but rare in normal lymphoid cells. Blood 103:3798–3804CrossRefPubMedGoogle Scholar
  25. 25.
    Taube T, Seeger K, Beyermann B, Hanel C, Duda S, Linderkamp C, Henze G (1997) Multiplex PCR for simultaneous detection of the most frequent T cell receptor-delta gene rearrangements in childhood ALL. Leukemia 11:1978–1982CrossRefPubMedGoogle Scholar
  26. 26.
    Bottaro M, Berti E, Biondi A, Migone N, Crosti L (1994) Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood 83:3271–3278PubMedGoogle Scholar
  27. 27.
    Eckert C, Landt O (2004) Real-time PCR to detect minimal residual disease in childhood ALL. Methods Mol Med 91:175–182PubMedGoogle Scholar
  28. 28.
    van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, Gottardi E, Rambaldi A, Dotti G, Griesinger F, Parreira A, Gameiro P, Diaz MG, Malec M, Langerak AW, San Miguel JF, Biondi A (1999) Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 13:1901–1928CrossRefPubMedGoogle Scholar
  29. 29.
    van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, Flohr T, Sutton R, Cave H, Madsen HO, Cayuela JM, Trka J, Eckert C, Foroni L, Zur Stadt U, Beldjord K, Raff T, van der Schoot CE, van Dongen JJ (2007) Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 21:604–611PubMedGoogle Scholar
  30. 30.
    Massenkeil G, Nagy M, Lawang M, Rosen O, Genvresse I, Geserick G, Dorken B, Arnold R (2003) Reduced intensity conditioning and prophylactic DLI can cure patients with high-risk acute leukaemias if complete donor chimerism can be achieved. Bone Marrow Transplant 31:339–345CrossRefPubMedGoogle Scholar
  31. 31.
    Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, Schnittger S, Schoch C, Jansen MW, van Dongen JJ, den Boer ML, Pieters R, Ennas MG, Angelucci E, Koehl U, Greil J, Griesinger F, Zur Stadt U, Eckert C, Szczepanski T, Niggli FK, Schafer BW, Kempski H, Brady HJ, Zuna J, Trka J, Nigro LL, Biondi A, Delabesse E, Macintyre E, Stanulla M, Schrappe M, Haas OA, Burmeister T, Dingermann T, Klingebiel T, Marschalek R (2006) The MLL recombinome of acute leukemias. Leukemia 20:777–784CrossRefPubMedGoogle Scholar
  32. 32.
    Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129:1377–1388CrossRefPubMedGoogle Scholar
  33. 33.
    Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67:9142–9149CrossRefPubMedGoogle Scholar
  34. 34.
    Harrison CJ (2001) The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukaemia. Blood Rev 15:49–59CrossRefPubMedGoogle Scholar
  35. 35.
    Masramon L, Vendrell E, Tarafa G, Capella G, Miro R, Ribas M, Peinado MA (2006) Genetic instability and divergence of clonal populations in colon cancer cells in vitro. J Cell Sci 119:1477–1482CrossRefPubMedGoogle Scholar
  36. 36.
    Kamps MP, Look AT, Baltimore D (1991) The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev 5:358–368CrossRefPubMedGoogle Scholar
  37. 37.
    Di Rocco G, Mavilio F, Zappavigna V (1997) Functional dissection of a transcriptionally active, target-specific Hox-Pbx complex. Embo J 16:3644–3654CrossRefPubMedGoogle Scholar
  38. 38.
    Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S, Schoch C, Jansen MW, van Dongen JJ, Pieters R, Haas OA, Dingermann T, Klingebiel T, Marschalek R (2005) Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci U S A 102:449–454CrossRefPubMedGoogle Scholar
  39. 39.
    Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O, Schwarzinger I (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351:250–259CrossRefPubMedGoogle Scholar
  40. 40.
    Hentel J, Hirschhorn K (1971) The origin of some bone marrow fibroblasts. Blood 38:81–86PubMedGoogle Scholar
  41. 41.
    Greenberg BR, Wilson FD, Woo L, Jenks HM (1978) Cytogentics of fibroblastic colonies in Ph1-positive chronic myelogenous leukemia. Blood 51:1039–1044PubMedGoogle Scholar
  42. 42.
    Zhao Z, Tang X, You Y, Li W, Liu F, Zou P (2006) Assessment of bone marrow mesenchymal stem cell biological characteristics and support hemotopoiesis function in patients with chronic myeloid leukemia. Leuk Res 30:993–1003CrossRefPubMedGoogle Scholar
  43. 43.
    Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB, Greaves MF (1997) Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A 94:13950–13954CrossRefPubMedGoogle Scholar
  44. 44.
    Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648CrossRefPubMedGoogle Scholar
  45. 45.
    Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545CrossRefPubMedGoogle Scholar
  46. 46.
    Ehnfors J, Kost-Alimova M, Persson NL, Bergsmedh A, Castro J, Levchenko-Tegnebratt T, Yang L, Panaretakis T, Holmgren L (2009) Horizontal transfer of tumor DNA to endothelial cells in vivo. Cell Death Differ 16:749–757CrossRefPubMedGoogle Scholar
  47. 47.
    Holmgren L, Szeles A, Rajnavolgyi E, Folkman J, Klein G, Ernberg I, Falk KI (1999) Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93:3956–3963PubMedGoogle Scholar
  48. 48.
    Pozzobon M, Piccoli M, Ditadi A, Bollini S, Destro R, Andre-Schmutz I, Masiero L, Lenzini E, Zanesco L, Petrelli L, Cavazzana-Calvo M, Gazzola MV, De Coppi P (2009) Mesenchymal stromal cells can be derived from bone marrow CD133+ cells: implications for therapy. Stem Cells Dev 18:497–510CrossRefPubMedGoogle Scholar
  49. 49.
    O'Neil J, Look AT (2007) Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene 26:6838–6849CrossRefPubMedGoogle Scholar
  50. 50.
    Callen E, Jankovic M, Difilippantonio S, Daniel JA, Chen HT, Celeste A, Pellegrini M, McBride K, Wangsa D, Bredemeyer AL, Sleckman BP, Ried T, Nussenzweig M, Nussenzweig A (2007) ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell 130:63–75CrossRefPubMedGoogle Scholar
  51. 51.
    Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, White D, Hughes TP, Le Beau MM, Pui CH, Relling MV, Shurtleff SA, Downing JR (2008) BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453:110–114CrossRefPubMedGoogle Scholar
  52. 52.
    Vanura K, Montpellier B, Le T, Spicuglia S, Navarro JM, Cabaud O, Roulland S, Vachez E, Prinz I, Ferrier P, Marculescu R, Jager U, Nadel B (2007) In vivo reinsertion of excised episomes by the V(D)J recombinase: a potential threat to genomic stability. PLoS Biol 5:e43CrossRefPubMedGoogle Scholar
  53. 53.
    Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew S, Ma J, Pounds SB, Su X, Pui CH, Relling MV, Evans WE, Shurtleff SA, Downing JR (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446:758–764CrossRefPubMedGoogle Scholar
  54. 54.
    Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA, Downing JR (2008) Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 322:1377–1380CrossRefPubMedGoogle Scholar
  55. 55.
    Duesberg PH (2003) Are cancers dependent on oncogenes or on aneuploidy? Cancer Genet Cytogenet 143:89–91CrossRefPubMedGoogle Scholar
  56. 56.
    Izraeli S (2006) Perspective: chromosomal aneuploidy in leukemia—lessons from down syndrome. Hematol Oncol 24:3–6CrossRefPubMedGoogle Scholar
  57. 57.
    Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432:338–341CrossRefPubMedGoogle Scholar
  58. 58.
    Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS, Zheng Y, Cancelas JA, Gu Y, Jansen M, Dimartino JF, Mulloy JC (2008) Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13:483–495CrossRefPubMedGoogle Scholar
  59. 59.
    Garayoa M, Garcia JL, Santamaria C, Garcia-Gomez A, Blanco JF, Pandiella A, Hernandez JM, Sanchez-Guijo FM, Del Canizo MC, Gutierrez NC, San Miguel JF (2009) Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 23:1515–1527CrossRefPubMedGoogle Scholar
  60. 60.
    Lopez-Villar O, Garcia JL, Sanchez-Guijo FM, Robledo C, Villaron EM, Hernandez-Campo P, Lopez-Holgado N, Diez-Campelo M, Barbado MV, Perez-Simon JA, Hernandez-Rivas JM, San-Miguel JF, del Canizo MC (2009) Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q-syndrome. Leukemia 23:664–672CrossRefPubMedGoogle Scholar
  61. 61.
    Borgmann A, Zinn C, Hartmann R, Herold R, Kaatsch P, Escherich G, Moricke A, Henze G, von Stackelberg A (2008) Secondary malignant neoplasms after intensive treatment of relapsed acute lymphoblastic leukaemia in childhood. Eur J Cancer 44:257–268CrossRefPubMedGoogle Scholar
  62. 62.
    Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11:421–429CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Shabnam Shalapour
    • 1
    • 2
  • Cornelia Eckert
    • 1
  • Karl Seeger
    • 1
  • Madlen Pfau
    • 1
  • Javier Prada
    • 1
  • Günter Henze
    • 1
  • Thomas Blankenstein
    • 2
    • 3
  • Thomas Kammertoens
    • 2
    • 3
  1. 1.Department of Pediatric Oncology and HematologyCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Institute of Immunology, Charité-Universitätsmedizin BerlinCampus Benjamin-FranklinBerlinGermany
  3. 3.Max-Delbrück Center for Molecular MedicineBerlinGermany

Personalised recommendations