Journal of Molecular Medicine

, Volume 88, Issue 2, pp 109–114

Community-associated methicillin-resistant Staphylococcus aureus immune evasion and virulence

  • Shawna F. Graves
  • Scott D. Kobayashi
  • Frank R. DeLeo
Review

Abstract

Staphylococcus aureus is a significant cause of human infections globally. Methicillin-resistant S. aureus (MRSA) emerged in the early 1960s and is now endemic in most healthcare facilities. Although healthcare-associated MRSA infections remain a major problem in most industrialized countries, those caused by community-associated MRSA (CA-MRSA) are now the most abundant cause of bacterial infections in the community in some parts of the world, such as the United States. The basis for the emergence and subsequent success of CA-MRSA is incompletely defined. However, the ability of the pathogen to cause disease in otherwise healthy individuals is likely attributed, in part, to its ability to circumvent killing by the innate immune system, which includes survival after phagocytosis by neutrophils. In this review, we discuss the role of neutrophils in host defense against S. aureus and highlight progress made toward understanding mechanisms of CA-MRSA virulence and pathogenesis.

Keywords

Neutrophil Virulence Host defense Staphylococcus aureus CA-MRSA Innate immunity Infection 

References

  1. 1.
    Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M (2001) Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32(Suppl 2):S114–S132CrossRefPubMedGoogle Scholar
  2. 2.
    Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771CrossRefPubMedGoogle Scholar
  3. 3.
    Gorwitz RJ, Kruszon-Moran D, McAllister SK, McQuillan G, McDougal LK, Fosheim GE, Jensen BJ, Killgore G, Tenover FC, Kuehnert MJ (2008) Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001–2004. J Infect Dis 197:1226–1234CrossRefPubMedGoogle Scholar
  4. 4.
    Graham PL III, Lin SX, Larson EL (2006) A U.S. population-based survey of Staphylococcus aureus colonization. Ann Intern Med 144:318–325PubMedGoogle Scholar
  5. 5.
    Spink WW, Hall WH, Ferris V (1945) Clinical significance of staphylococci with natural or acquired resistance to the sulfonamides and to penicillin. JAMA 128:555–559Google Scholar
  6. 6.
    Barber M, Rozwadowska-Dowzenko M (1948) Infection by penicillin-resistant staphylococci. Lancet 252:641–644CrossRefGoogle Scholar
  7. 7.
    Jevons MP (1961) “Celbenin”-resistant staphylococci. Br Med J 1:124–125CrossRefGoogle Scholar
  8. 8.
    Chambers HF, DeLeo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:2464–2474CrossRefGoogle Scholar
  9. 9.
    DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474CrossRefPubMedGoogle Scholar
  10. 10.
    Udo EE, Pearman JW, Grubb WB (1993) Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J Hosp Infect 25:97–108CrossRefPubMedGoogle Scholar
  11. 11.
    Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, Leitch CD, Daum RS (1998) Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279:593–598CrossRefPubMedGoogle Scholar
  12. 12.
    Centers for Disease Control and Prevention (1999) Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus—Minnesota and North Dakota, 1997–1999. JAMA 282:1123–1125CrossRefGoogle Scholar
  13. 13.
    Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, Talan DA (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355:666–674CrossRefPubMedGoogle Scholar
  14. 14.
    Adem PV, Montgomery CP, Husain AN, Koogler TK, Arangelovich V, Humilier M, Boyle-Vavra S, Daum RS (2005) Staphylococcus aureus sepsis and the Waterhouse–Friderichsen syndrome in children. N Engl J Med 353:1245–1251CrossRefPubMedGoogle Scholar
  15. 15.
    Miller LG, Perdreau-Remington F, Rieg G, Mehdi S, Perlroth J, Bayer AS, Tang AW, Phung TO, Spellberg B (2005) Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med 352:1445–1453CrossRefPubMedGoogle Scholar
  16. 16.
    Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O'Brien FG, Coombs GW, Pearman JW, Tenover FC, Kapi M et al (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40:4289–4294CrossRefPubMedGoogle Scholar
  17. 17.
    Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy ME et al (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton–Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978–984PubMedGoogle Scholar
  18. 18.
    Rossney AS, Shore AC, Morgan PM, Fitzgibbon MM, O'Connell B, Coleman DC (2007) The emergence and importation of diverse genotypes of methicillin-resistant Staphylococcus aureus (MRSA) harboring the Panton–Valentine leukocidin gene (pvl) reveal that pvl is a poor marker for community-acquired MRSA strains in Ireland. J Clin Microbiol 45:2554–2563CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang K, McClure JA, Elsayed S, Tan J, Conly JM (2008) Coexistence of Panton–Valentine leukocidin-positive and leukocidin-negative community-associated methicillin-resistant Staphylococcus aureus USA400 sibling strains in a large Canadian health-care region. J Infect Dis 197:195–204CrossRefPubMedGoogle Scholar
  20. 20.
    O'Brien FG, Lim TT, Chong FN, Coombs GW, Enright MC, Robinson DA, Monk A, Said-Salim B, Kreiswirth BN, Grubb WB (2004) Diversity among community isolates of methicillin-resistant Staphylococcus aureus in Australia. J Clin Microbiol 42:3185–3190CrossRefPubMedGoogle Scholar
  21. 21.
    Kim ES, Song JS, Lee HJ, Choe PG, Park KH, Cho JH, Park WB, Kim SH, Bang JH, Kim DM et al (2007) A survey of community-associated methicillin-resistant Staphylococcus aureus in Korea. J Antimicrob Chemother 60:1108–1114CrossRefPubMedGoogle Scholar
  22. 22.
    Lekstrom-Himes JA, Gallin JI (2000) Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med 343:1703–1714CrossRefPubMedGoogle Scholar
  23. 23.
    Rosen H, Klebanoff SJ (1979) Bactericidal activity of a superoxide anion-generating system. A model for the polymorphonuclear leukocyte. J Exp Med 149:27–39CrossRefPubMedGoogle Scholar
  24. 24.
    Cohn ZA, Hirsch JG (1960) The influence of phagocytosis on the intracellular distribution of granule-associated components of polymorphonuclear leucocytes. J Exp Med 112:1015–1022CrossRefPubMedGoogle Scholar
  25. 25.
    Rogers DE, Tompsett R (1952) The survival of staphylococci within human leukocytes. J Exp Med 95:209–230CrossRefPubMedGoogle Scholar
  26. 26.
    Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Said-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN et al (2005) Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol 175:3907–3919PubMedGoogle Scholar
  27. 27.
    Gresham HD, Lowrance JH, Caver TE, Wilson BS, Cheung AL, Lindberg FP (2000) Survival of Staphylococcus aureus inside neutrophils contributes to infection. J Immunol 164:3713–3722PubMedGoogle Scholar
  28. 28.
    Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C (1989) Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 83:865–875CrossRefPubMedGoogle Scholar
  29. 29.
    DeLeo FR, Diep BA, Otto M (2009) Host defense and pathogenesis in Staphylococcus aureus infections. Infect Dis Clin North Am 23:17–34CrossRefPubMedGoogle Scholar
  30. 30.
    Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF et al (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739CrossRefPubMedGoogle Scholar
  31. 31.
    Kennedy AD, Otto M, Braughton KR, Whitney AR, Chen L, Mathema B, Mediavilla JR, Byrne KA, Parkins LD, Tenover FC et al (2008) Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci USA 105:1327–1332CrossRefPubMedGoogle Scholar
  32. 32.
    Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T et al (2002) Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827CrossRefPubMedGoogle Scholar
  33. 33.
    King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM (2006) Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med 144:309–317PubMedGoogle Scholar
  34. 34.
    McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:5113–5120CrossRefPubMedGoogle Scholar
  35. 35.
    Voyich JM, Otto M, Mathema B, Braughton KR, Whitney AR, Welty D, Long RD, Dorward DW, Gardner DJ, Lina G et al (2006) Is Panton–Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J Infect Dis 194:1761–1770CrossRefPubMedGoogle Scholar
  36. 36.
    Diep BA, Stone GG, Basuino L, Graber CJ, Miller A, des Etages S-A, Jones A, Pallazolo-Ballance AM, Perdreau-Remington F, Sensabaugh GF et al (2008) The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis 197:1523–1530CrossRefPubMedGoogle Scholar
  37. 37.
    Robinson DA, Kearns AM, Holmes A, Morrison D, Grundmann H, Edwards G, O'Brien FG, Tenover FC, McDougal LK, Monk AB et al (2005) Re-emergence of early pandemic Staphylococcus aureus as a community-acquired meticillin-resistant clone. Lancet 365:1256–1258CrossRefPubMedGoogle Scholar
  38. 38.
    Bubeck Wardenburg J, Bae T, Otto M, DeLeo FR, Schneewind O (2007) Poring over pores: alpha-hemolysin and Panton–Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 13:1405–1406CrossRefPubMedGoogle Scholar
  39. 39.
    Tseng CW, Kyme P, Low J, Rocha MA, Alsabeh R, Miller LG, Otto M, Arditi M, Diep BA, Nizet V et al (2009) Staphylococcus aureus Panton–Valentine leukocidin contributes to inflammation and muscle tissue injury. PLoS ONE 4:e6387CrossRefPubMedGoogle Scholar
  40. 40.
    Brown EL, Dumitrescu O, Thomas D, Badiou C, Koers EM, Choudhury P, Vazquez V, Etienne J, Lina G, Vandenesch F et al (2009) The Panton–Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clin Microbiol Infect 15:156–164CrossRefPubMedGoogle Scholar
  41. 41.
    Montgomery CP, Daum RS (2009) Transcription of inflammatory genes in the lung after infection with community-associated methicillin-resistant Staphylococcus aureus: a role for Panton–Valentine leukocidin? Infect Immun 77:2159–2167CrossRefPubMedGoogle Scholar
  42. 42.
    Diep BA, Palazzolo-Ballance AM, Tattevin P, Basuino L, Braughton KR, Whitney AR, Chen L, Kreiswirth BN, Otto M, DeLeo FR et al (2008) Contribution of Panton–Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS ONE 3:e3198CrossRefPubMedGoogle Scholar
  43. 43.
    Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo FR (2008) Panton–Valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus aureus disease. J Infect Dis 198:1166–1170CrossRefPubMedGoogle Scholar
  44. 44.
    Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, Barbu EM, Vazquez V, Hook M, Etienne J et al (2007) Staphylococcus aureus Panton–Valentine leukocidin causes necrotizing pneumonia. Science 315:1130–1133CrossRefPubMedGoogle Scholar
  45. 45.
    Villaruz AE, Bubeck Wardenburg J, Khan BA, Whitney AR, Sturdevant DE, Gardner DJ, DeLeo FR, Otto M (2009) A point mutation in the agr locus rather than expression of the Panton–Valentine leukocidin caused previously reported phenotypes in Staphylococcus aureus pneumonia and gene regulation. J Infect Dis 200:724–734CrossRefPubMedGoogle Scholar
  46. 46.
    Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132CrossRefPubMedGoogle Scholar
  47. 47.
    Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, Bes M, Vandenesch F, Piemont Y, Brousse N, Floret D et al (2002) Association between Staphylococcus aureus strains carrying gene for Panton–Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359:753–759CrossRefPubMedGoogle Scholar
  48. 48.
    Hongo I, Baba T, Oishi K, Morimoto Y, Ito T, Hiramatsu K (2009) Phenol-soluble modulin alpha 3 enhances the human neutrophil lysis mediated by Panton–Valentine leukocidin. J Infect Dis 200:715–723CrossRefPubMedGoogle Scholar
  49. 49.
    de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, Van Strijp JA (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695CrossRefPubMedGoogle Scholar
  50. 50.
    Szmigielski S, Prevost G, Monteil H, Colin DA, Jeljaszewicz J (1999) Leukocidal toxins of staphylococci. Zentralbl Bakteriol 289:185–201PubMedGoogle Scholar
  51. 51.
    Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A et al (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514CrossRefPubMedGoogle Scholar
  52. 52.
    Li M, Diep BA, Villaruz AE, Braughton KR, Jiang X, DeLeo FR, Chambers HF, Lu Y, Otto M (2009) Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 106:5883–5888CrossRefPubMedGoogle Scholar
  53. 53.
    Bubeck Wardenburg J, Schneewind O (2008) Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med 205:287–294CrossRefPubMedGoogle Scholar
  54. 54.
    Bubeck WJ, Patel RJ, Schneewind O (2007) Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect Immun 75:1040–1044CrossRefGoogle Scholar
  55. 55.
    Bartlett AH, Foster TJ, Hayashida A, Park PW (2008) Alpha-toxin facilitates the generation of CXC chemokine gradients and stimulates neutrophil homing in Staphylococcus aureus pneumonia. J Infect Dis 198:1529–1535CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Shawna F. Graves
    • 1
  • Scott D. Kobayashi
    • 1
  • Frank R. DeLeo
    • 1
  1. 1.Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthHamiltonUSA

Personalised recommendations