Journal of Molecular Medicine

, 87:1053 | Cite as

ATF3 transcription factor and its emerging roles in immunity and cancer

  • Matthew R. Thompson
  • Dakang Xu
  • Bryan R. G. WilliamsEmail author


Activating transcription factor 3 (ATF3) is a member of the ATF/cyclic AMP response element-binding (ATF/CREB) family of transcription factors. It is an adaptive-response gene that participates in cellular processes to adapt to extra- and/or intracellular changes, where it transduces signals from various receptors to activate or repress gene expression. Advances made in understanding the immunobiology of Toll-like receptors have recently generated new momentum for the study of ATF3 in immunity. Moreover, the role of ATF3 in the regulation of the cell cycle and apoptosis has important implications for understanding susceptibility to and progression of several cancers.


ATF3 Transcriptional regulation Immunity TLRs Oncogenesis Gene expression 



This work was supported in part by a grant from the National Institutes of Health (P01 CA062220). MT was supported by a scholarship from the Australian Rotary Health Research Fund/Rotary District 9650 Bowelscan.

Conflict of interest statement

The authors declare that they have no conflict of interests.


  1. 1.
    Hai T (2006) The ATF transcription factors in cellular adaptive responses. In: Ma J (ed) Gene expression and regulation. Higher Education Press, Beijing, China, pp 322–333Google Scholar
  2. 2.
    Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328:175–178CrossRefPubMedGoogle Scholar
  3. 3.
    Deutsch PJ, Hoeffler JP, Jameson JL, Lin JC, Habener JF (1988) Structural determinants for transcriptional activation by cAMP-responsive DNA elements. J Biol Chem 263:18466–18472PubMedGoogle Scholar
  4. 4.
    Hai T, Liu F, Coukos WJ, Green MR (1989) Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 3:2083–2090CrossRefPubMedGoogle Scholar
  5. 5.
    Chen BP, Liang G, Whelan J, Hai T (1994) ATF3 and ATF3 ∆ Zip: transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem 269:15819–15826PubMedGoogle Scholar
  6. 6.
    Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88:3720–3724CrossRefPubMedGoogle Scholar
  7. 7.
    Hsu JC, Laz T, Mohn KL, Taub R (1991) Identification of LRF-1, a leucine-zipper protein that is rapidly and highly induced in regenerating liver. Proc Natl Acad Sci USA 88:3511–3515CrossRefPubMedGoogle Scholar
  8. 8.
    Hsu JC, Bravo R, Taub R (1992) Interactions among LRF-1, JunB, c-Jun, and c-Fos define a regulatory program in the G1 phase of liver regeneration. Mol Cell Biol 12:4654–4665PubMedGoogle Scholar
  9. 9.
    Chu HM, Tan Y, Kobierski LA, Balsam LB, Comb MJ (1994) Activating transcription factor-3 stimulates 3′, 5′-cyclic adenosine monophosphate-dependent gene expression. Mol Endocrinol 8:59–68CrossRefPubMedGoogle Scholar
  10. 10.
    Fawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339(Pt 1):135–141CrossRefPubMedGoogle Scholar
  11. 11.
    Nilsson M, Toftgard R, Bohm S (1995) Activated Ha-Ras but not TPA induces transcription through binding sites for activating transcription factor 3/Jun and a novel nuclear factor. J Biol Chem 270:12210–12218CrossRefPubMedGoogle Scholar
  12. 12.
    Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U (1999) ATF3 and stress responses. Gene Expr 7:321–335PubMedGoogle Scholar
  13. 13.
    Lu D, Wolfgang CD, Hai T (2006) Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281:10473–10481CrossRefPubMedGoogle Scholar
  14. 14.
    Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825CrossRefPubMedGoogle Scholar
  15. 15.
    Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ (2008) Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 105:652–656CrossRefPubMedGoogle Scholar
  16. 16.
    Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317:124–127CrossRefPubMedGoogle Scholar
  17. 17.
    Leitner WW, Hwang LN, DeVeer MJ, Zhou A, Silverman RH, Williams BRG, Dubensky TW, Ying H, Restifo NP (2003) Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med 9:33–39CrossRefPubMedGoogle Scholar
  18. 18.
    Scheule RK (2000) The role of CpG motifs in immunostimulation and gene therapy. Adv Drug Deliv Rev 44:119–134CrossRefPubMedGoogle Scholar
  19. 19.
    McCluskie MJ, Weeratna RD, Davis HL (2000) The role of CpG in DNA vaccines. Springer Semin Immunopathol 22:125–132CrossRefPubMedGoogle Scholar
  20. 20.
    Whitmore MM, DeVeer MJ, Edling A, Oates RK, Simons B, Lindner D, Williams BRG (2004) Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumour activity. Cancer Res 64:5850–5860CrossRefPubMedGoogle Scholar
  21. 21.
    Whitmore MM, Iparraguirre A, Kubelka L, Weninger W, Hai T, Williams BRG (2007) Negative regulation of TLR-signaling pathways by activating transcription factor-3. J Immunol 179:3622–3630PubMedGoogle Scholar
  22. 22.
    Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178CrossRefPubMedGoogle Scholar
  23. 23.
    Litvak V, Ramsey SA, Rust AG, Zak DE, Kennedy K, Lampano AE, Nykter M, Shmulevich I, Aderem A (2009) Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol 10:437–443CrossRefPubMedGoogle Scholar
  24. 24.
    Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J, Wang X, Frankel WL, Guttridge D, Prentki M, Grey ST, Ron D, Hai T (2004) Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol 24:5721–5732CrossRefPubMedGoogle Scholar
  25. 25.
    Gilchrist M, Henderson WR Jr, Clark AE, Simmons RM, Ye X, Smith KD, Aderem A (2008) Activating transcription factor 3 is a negative regulator of allergic pulmonary inflammation. J Exp Med 205:2349–2357CrossRefPubMedGoogle Scholar
  26. 26.
    Khuu CH, Barrozo RB, Hai T, Weinstein SL (2007) Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol Immunol 44:1598–1605CrossRefPubMedGoogle Scholar
  27. 27.
    Rosenberger CM, Clark AE, Treuting PM, Johnson CD, Aderem A (2008) ATF3 regulates MCMV infection in mice by modulating IFN-γ expression in natural killer cells. Proc Natl Acad Sci USA 105:2544–2549CrossRefPubMedGoogle Scholar
  28. 28.
    Yin X, DeWille JW, Hai T (2008) A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene 27:2118–2127CrossRefPubMedGoogle Scholar
  29. 29.
    Pelzer AE, Bektic J, Haag P, Berger AP, Pycha A, Schäfer G, Rogatsch H, Horninger W, Bartsch G, Klocker H (2006) The expression of transcription factor activating transcription factor 3 in the human prostate and its regulation by androgen in prostate cancer. J Urol 175:1517–1522CrossRefPubMedGoogle Scholar
  30. 30.
    Janz M, Hummel M, Truss M, Wollert-Wulf B, Mathas S, Jöhrens K, Hagemeier C, Bommert K, Stein H, Dörken D, Bargou RC (2006) Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of Hodgkin/Reed-Sternberg cells. Blood 107:2536–2539CrossRefPubMedGoogle Scholar
  31. 31.
    Bandyopadhyay S, Wang Y, Zhan R, Pai SK, Watabe M, Iiizumi M, Furuta E, Mohinta S, Liu W, Horita S, Hosobe S, Tsikada T, Miura K, Takano Y, Saito K, Commes T, Piquemal D, Hai T, Watabe K (2006) The tumor metastatis suppressor gene Drg-1 down-regulates the expression of activating transcription factor 3 in prostate cancer. Cancer Res 66:11983–11990CrossRefPubMedGoogle Scholar
  32. 32.
    Ishiguro T, Nagawa H, Naito M, Tsuruo T (2000) Inhibitory effect of ATF3 antisense oligonucleotide on ectopic growth of HT29 human colon cancer cells. Jpn J Cancer Res 91:833–836PubMedGoogle Scholar
  33. 33.
    Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995CrossRefPubMedGoogle Scholar
  34. 34.
    Maytin EV, Ubeda M, Lin JC, Habener JF (2001) Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp Cell Res 267:193–204CrossRefPubMedGoogle Scholar
  35. 35.
    Kim R, Ohi Y, Inoue H, Aogi K, Toge T (1999) Introduction of gadd153 gene into gastric cancer cells can modulate sensitivity to anticancer agents in association with apoptosis. Anticancer Res 19:1779–1783PubMedGoogle Scholar
  36. 36.
    Scott DW, Loo G (2004) Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis 25:2155–2164CrossRefPubMedGoogle Scholar
  37. 37.
    Wolfgang CD, Chen BP, Martindale JL, Holbrook NJ, Hai T (1997) gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol Cell Biol 17:6700–6707PubMedGoogle Scholar
  38. 38.
    Bottone FG Jr, Martinez JM, Collins JB, Afshari CA, Eling TE (2003) Gene modulation by the cyclooxygenase inhibitor, sulindac sulfide, in human colorectal carcinoma cells: possible link to apoptosis. J Biol Chem 278:25790–25801CrossRefPubMedGoogle Scholar
  39. 39.
    Huang X, Li X, Guo B (2008) KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3. J Biol Chem 283:29795–29801CrossRefPubMedGoogle Scholar
  40. 40.
    Bottone FG Jr, Moon Y, Kim JS, Alston-Mills B, Ishibashi M, Eling TE (2005) The anti-invasive activity of cyclooxygenase inhibitors is regulated by the transcription factor ATF3 (activating transcription factor 3). Mol Cancer Ther 4:693–703CrossRefPubMedGoogle Scholar
  41. 41.
    Syed V, Mukherjee K, Lyons-Weiler J, Lau KM, Mashima T, Tsuruo T, Ho SM (2005) Identification of ATF-3, caveolin-1, DLC-1, and NM23–H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene 24:1774–1787CrossRefPubMedGoogle Scholar
  42. 42.
    Kang Y, Chen CR, Massague J (2003) A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11:915–926CrossRefPubMedGoogle Scholar
  43. 43.
    Ling MT, Wang X, Zhang X, Wong YC (2006) The multiple roles of Id-1 in cancer progression. Differentiation 74:481–487CrossRefPubMedGoogle Scholar
  44. 44.
    Yan C, Jamaluddin MS, Aggarwal B, Myers J, Boyd DD (2005) Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther 4:233–241PubMedGoogle Scholar
  45. 45.
    Yamaguchi K, Lee SH, Kim JS, Wimalasena J, Kitajima S, Baek SJ (2006) Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway. Cancer Res 66:2376–2384CrossRefPubMedGoogle Scholar
  46. 46.
    Wang A, Arantes S, Conti C, McArthur M, Aldaz CM, MacLeod MC (2007) Epidermal hyperplasia and oral carcinoma in mice overexpressing the transcription factor ATF3 in basal epithelial cells. Mol Carcinog 46:476–487CrossRefPubMedGoogle Scholar
  47. 47.
    Wang A, Arantes S, Yan L, Kiguchi K, McArthur MJ, Sahin A, Thames HD, Aldaz CM, Macleod MC (2008) The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis. BMC Cancer 8:268CrossRefPubMedGoogle Scholar
  48. 48.
    Li D, Yin X, Zmuda EJ, Wolford CC, Dong X, White MF, Hai T (2008) The repression of IRS2 gene by ATF3, a stress-inducible gene, contributes to pancreatic beta-cell apoptosis. Diabetes 57:635–644CrossRefPubMedGoogle Scholar
  49. 49.
    Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904CrossRefPubMedGoogle Scholar
  50. 50.
    Dearth RK, Cui X, Kim HJ, Hadsell DL, Lee AV (2007) Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle 6:705–713PubMedGoogle Scholar
  51. 51.
    Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006) Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25:1620–1628CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Matthew R. Thompson
    • 1
  • Dakang Xu
    • 1
  • Bryan R. G. Williams
    • 1
    Email author
  1. 1.Monash Institute of Medical ResearchMonash UniversityMelbourneAustralia

Personalised recommendations