Journal of Molecular Medicine

, 87:1123 | Cite as

Lysosomal ceramide mediates gemcitabine-induced death of glioma cells

  • Claudia A. Dumitru
  • Ibrahim E. Sandalcioglu
  • Marek Wagner
  • Michael Weller
  • Erich Gulbins
Original Article

Abstract

Acid sphingomyelinase-induced ceramide release has been shown by many studies to induce apoptosis in response to various stimuli. However, the mechanisms of acid sphingomyelinase/ceramide-mediated death signaling following treatment with chemotherapeutic drugs have not been fully elucidated thus far. The present study demonstrates that treatment of glioma cells with clinically achievable doses of gemcitabine results in acid sphingomyelinase activation, lysosomal accumulation of ceramide, cathepsin D activation, Bax insertion into the mitochondria, and cell death. Pharmacological inhibition or genetic deficiency of acid sphingomyelinase prevented these events while overexpression of the enzyme sensitized cells to gemcitabine. Likewise, inhibitors of lysosomal functions also prevent gemcitabine-induced cell death. Our data indicate a critical role of the acid sphingomyelinase/ceramide system for gemcitabine-induced signaling and suggest that lysosomal ceramide accumulation mediates cell death induced by a chemotherapeutic drug.

Keywords

Glioma Ceramide Acid sphingomyelinase Death Lysosomes Apoptosis Lipid research Tumor 

Notes

Conflict of interest statement

The authors declare that they have no conflict of interests.

References

  1. 1.
    Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811CrossRefPubMedGoogle Scholar
  2. 2.
    Green DR (2005) Apoptotic pathways: ten minutes to dead. Cell 121:671–674CrossRefPubMedGoogle Scholar
  3. 3.
    Lavrik I, Golks A, Krammer PH (2005) Death receptor signaling. J Cell Sci 118:265–267CrossRefPubMedGoogle Scholar
  4. 4.
    Belka C, Budach W (2002) Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. Int J Radiat Biol 78:643–658CrossRefPubMedGoogle Scholar
  5. 5.
    Daniel PT, Schulze-Osthoff K, Belka C, Güner D (2003) Guardians of cell death: the Bcl-2 family proteins. Essays Biochem 39:73–88PubMedGoogle Scholar
  6. 6.
    Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136CrossRefPubMedGoogle Scholar
  7. 7.
    Kolesnick RN, Goni FM, Alonso A (2000) Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 184:285–300CrossRefPubMedGoogle Scholar
  8. 8.
    Clarke CJ, Hannun YA (2006) Neutral sphingomyelinases and nSMase2: bridging the gaps. Biochim Biophys Acta 1758:1893–1901CrossRefPubMedGoogle Scholar
  9. 9.
    Liu F, Cheng Y, Wu J, Tauschel HD, Duan RD (2006) Ursodeoxycholic acid differentially affects three types of sphingomyelinase in human colon cancer Caco 2 cells. Cancer Lett 235:141–146CrossRefPubMedGoogle Scholar
  10. 10.
    Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25:5612–5625CrossRefPubMedGoogle Scholar
  11. 11.
    Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596CrossRefPubMedGoogle Scholar
  12. 12.
    Cremesti A, Paris F, Grassme H, Holler N, Tschopp J, Fuks Z, Gulbins E, Kolesnick R (2001) Ceramide enables fas to cap and kill. J Biol Chem 276:23954–23961CrossRefPubMedGoogle Scholar
  13. 13.
    Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470CrossRefPubMedGoogle Scholar
  14. 14.
    Grassme H, Schwarz H, Gulbins E (2001) Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 284:1016–1030CrossRefPubMedGoogle Scholar
  15. 15.
    Scheel-Toellner D, Wang K, Assi LK, Webb PR, Craddock RM, Salmon M, Lord JM (2004) Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. Biochem Soc Trans 32:679–681CrossRefPubMedGoogle Scholar
  16. 16.
    Santana P, Pena LA, Haimovitz-Friedman A, Martin S, Green D, McLoughlin M, Cordon-Cardo C, Schuchman EH, Fuks Z, Kolesnick R (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86:189–199CrossRefPubMedGoogle Scholar
  17. 17.
    Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327PubMedGoogle Scholar
  18. 18.
    Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297CrossRefPubMedGoogle Scholar
  19. 19.
    Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159CrossRefPubMedGoogle Scholar
  20. 20.
    Charruyer A, Grazide S, Bezombes C, Müller S, Laurent G, Jaffrézou JP (2005) UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem 280:19196–19204CrossRefPubMedGoogle Scholar
  21. 21.
    Kashkar H, Wiegmann K, Yazdanpanah B, Haubert D, Krönke M (2005) Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane. J Biol Chem 280:20804–20813CrossRefPubMedGoogle Scholar
  22. 22.
    Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 280:26425–26434CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang Y, Mattjus P, Schmid PC, Dong Z, Zhong S, Ma WY, Brown RE, Bode AM, Schmid HH, Dong Z (2001) Involvement of the acid sphingomyelinase pathway in UVA-induced apoptosis. J Biol Chem 276:11775–11782CrossRefPubMedGoogle Scholar
  24. 24.
    Morita Y, Perez GI, Paris F, Miranda SR, Ehleiter D, Haimovitz-Friedman A, Fuks Z, Xie Z, Reed JC, Schuchman EH, Kolesnick RN, Tilly JL (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6:1109–1114CrossRefPubMedGoogle Scholar
  25. 25.
    Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel MT (2004) Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 64:3593–3598CrossRefPubMedGoogle Scholar
  26. 26.
    Grammatikos G, Teichgraber V, Carpinteiro A, Trarbach T, Weller M, Hengge UR, Gulbins E (2007) Overexpression of acid sphingomyelinase sensitizes glioma cells to chemotherapy. Antioxid Redox Signal 9:1449–1456CrossRefPubMedGoogle Scholar
  27. 27.
    Serano RD, Pegram CN, Bigner DD (1980) Tumorigenic cell culture lines from a spontaneous VM/Dk murine astrocytoma (SMA). Acta Neuropathol 51:53–64CrossRefPubMedGoogle Scholar
  28. 28.
    Gulbins E, Kolesnick R (2000) Measurement of sphingomyelinase activity. Methods Enzymol 322:382–388CrossRefPubMedGoogle Scholar
  29. 29.
    Hurwitz R, Ferlinz K, Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 375:447–450PubMedGoogle Scholar
  30. 30.
    Lalier L, Cartron PF, Juin P, Nedelkina S, Manon S, Bechinger B, Vallette FM (2007) Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12:887–896CrossRefPubMedGoogle Scholar
  31. 31.
    Heinrich M, Neumeyer J, Jakob M et al (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563CrossRefPubMedGoogle Scholar
  32. 32.
    Heinrich M, Wickel M, Schneider-Brachert W, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A, Schütze S (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. Embo J 18:5252–5263CrossRefPubMedGoogle Scholar
  33. 33.
    Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbins E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6:431–439CrossRefPubMedGoogle Scholar
  34. 34.
    Grassme H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF (1997) Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91:605–615CrossRefPubMedGoogle Scholar
  35. 35.
    Grassme H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330CrossRefPubMedGoogle Scholar
  36. 36.
    Grassme H, Riehle A, Wilker B, Gulbins E (2005) Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280:26256–26262CrossRefPubMedGoogle Scholar
  37. 37.
    Jan JT, Chatterjee S, Griffin DE (2000) Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J Virol 74:6425–6432CrossRefPubMedGoogle Scholar
  38. 38.
    Brenner B, Koppenhoefer U, Weinstock C, Linderkamp O, Lang F, Gulbins E (1997) Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J Biol Chem 272:22173–22181CrossRefPubMedGoogle Scholar
  39. 39.
    Yi F, Chen QZ, Jin S, Li PL (2007) Mechanism of homocysteine-induced Rac1/NADPH oxidase activation in mesangial cells: role of guanine nucleotide exchange factor Vav2. Cell Physiol Biochem 20:909–918CrossRefPubMedGoogle Scholar
  40. 40.
    Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, Sanz L, Moscat J (1994) Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem 269:19200–19202PubMedGoogle Scholar
  41. 41.
    Bourbon NA, Yun J, Kester M (2000) Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. J Biol Chem 275:35617–35623CrossRefPubMedGoogle Scholar
  42. 42.
    Basu S, Kolesnick R (1998) Stress signals for apoptosis: ceramide and c-Jun kinase. Oncogene 17:3277–3285CrossRefPubMedGoogle Scholar
  43. 43.
    Jarvis WD, Grant S, Kolesnick RN (1996) Ceramide and the induction of apoptosis. Clin Cancer Res 2:1–6PubMedGoogle Scholar
  44. 44.
    Ruvolo PP (2001) Ceramide regulates cellular homeostasis via diverse stress signaling pathways. Leukemia 15:1153–1160CrossRefPubMedGoogle Scholar
  45. 45.
    Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem 273:30419–30426CrossRefPubMedGoogle Scholar
  46. 46.
    Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA (1993) Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268:15523–15530PubMedGoogle Scholar
  47. 47.
    Ruvolo PP, Clark W, Mumby M, Gao F, May WS (2002) A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem 277:22847–22852CrossRefPubMedGoogle Scholar
  48. 48.
    Ruvolo PP, Deng X, Ito T, Carr BK, May WS (1999) Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J Biol Chem 274:20296–20300CrossRefPubMedGoogle Scholar
  49. 49.
    Salinas M, Lopez-Valdaliso R, Martin D, Alvarez A, Cuadrado A (2000) Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci 15:156–169CrossRefPubMedGoogle Scholar
  50. 50.
    Zeidan YH, Jenkins RW, Hannun YA (2008) Remodeling of cellular cytoskeleton by the acid sphingomyelinase/ceramide pathway. J Cell Biol 181:335–350CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Claudia A. Dumitru
    • 1
  • Ibrahim E. Sandalcioglu
    • 2
  • Marek Wagner
    • 1
  • Michael Weller
    • 3
  • Erich Gulbins
    • 1
  1. 1.Department of Molecular BiologyUniversity of Duisburg-EssenEssenGermany
  2. 2.Department of NeurosurgeryUniversity of Duisburg-EssenEssenGermany
  3. 3.Department of NeurologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations