Advertisement

Journal of Molecular Medicine

, Volume 87, Issue 9, pp 885–891 | Cite as

p66Shc protein, oxidative stress, and cardiovascular complications of diabetes: the missing link

  • Pietro Francia
  • Francesco Cosentino
  • Marzia Schiavoni
  • Yale Huang
  • Enrico Perna
  • Giovani G. Camici
  • Thomas F. Lüscher
  • Massimo VolpeEmail author
Review

Abstract

Diabetes affects more than 150 million people worldwide, and it is estimated that this would increase to 299 million by the year 2025. The incidence of and mortality from cardiovascular disease are two- to eightfold higher in subjects with diabetes than in those without, coronary artery disease accounting for the large majority of deaths. Among the full spectrum of biochemical effects of high glucose, generation of oxygen-derived free radicals is one of the main pathophysiological mechanisms linking hyperglycemia to atherosclerosis, nephropathy, and cardiomyopathy. The adaptor protein p66Shc is implicated in mitochondrial reactive oxygen species (ROS) generation and translation of oxidative signals into apoptosis. Indeed, p66Shc−/− mice display prolonged lifespan, reduced production of intracellular oxidants, and increased resistance to oxidative stress-induced apoptosis. Accordingly, a series of studies defined the pathophysiological role of p66Shc in cardiovascular disease where ROS represent a substantial triggering component. As p66Shc modulates the production of cellular ROS, it represents a proximal node through which high glucose exerts its deleterious effects on different cell types; indeed, several studies tested the hypothesis that deletion of the p66Shc gene may confer protection against diabetes-related cardiovascular complications. The present review focuses on the reported evidence linking p66Shc signaling pathway to high glucose-associated endothelial dysfunction, atherogenesis, nephropathy, and cardiomyopathy.

Keywords

p66Shc Diabetes Oxidative stress Cardiovascular disease 

Notes

Conflict of interest statement

The authors declare that they have no conflict of interests.

References

  1. 1.
    Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci PG (1996) Not all Shc’s roads lead to Ras. Trends Biochem Sci 21:257–261PubMedGoogle Scholar
  2. 2.
    Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313PubMedCrossRefGoogle Scholar
  3. 3.
    Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, De Rosa G, Pelicci P (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 100:2112–2116PubMedCrossRefGoogle Scholar
  4. 4.
    Francia P, delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E, Pelicci PG, Schiavoni M, Luscher TF, Volpe M, Cosentino F (2004) Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 110:2889–2895PubMedCrossRefGoogle Scholar
  5. 5.
    Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P, Luscher TF, Cosentino F (2007) Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci U S A 104:5217–5222PubMedCrossRefGoogle Scholar
  6. 6.
    Zaccagnini G, Martelli F, Fasanaro P, Magenta A, Gaetano C, Di Carlo A, Biglioli P, Giorgio M, Martin-Padura I, Pelicci PG, Capogrossi MC (2004) p66ShcA modulates tissue response to hindlimb ischemia. Circulation 109:2917–2923PubMedCrossRefGoogle Scholar
  7. 7.
    Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Luscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J (2006) Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 99:42–52. doi: 01.RES.0000231289.63468.08[pii]10.1161/01.RES.0000231289.63468.08 PubMedCrossRefGoogle Scholar
  8. 8.
    Graiani G, Lagrasta C, Migliaccio E, Spillmann F, Meloni M, Madeddu P, Quaini F, Padura IM, Lanfrancone L, Pelicci P, Emanueli C (2005) Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage. Hypertension 46:433–440. doi: 01.HYP.0000174986.73346.ba[pii]10.1161/01.HYP.0000174986.73346.ba PubMedCrossRefGoogle Scholar
  9. 9.
    Cosentino F, Francia P, Camici GG, Pelicci PG, Luscher TF, Volpe M (2008) Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 28:622–628. doi: ATVBAHA.107.156059[pii]10.1161/ATVBAHA.107.156059 PubMedCrossRefGoogle Scholar
  10. 10.
    Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233PubMedCrossRefGoogle Scholar
  11. 11.
    Matsuoka T, Wada J, Hashimoto I, Zhang Y, Eguchi J, Ogawa N, Shikata K, Kanwar YS, Makino H (2005) Gene delivery of Tim44 reduces mitochondrial superoxide production and ameliorates neointimal proliferation of injured carotid artery in diabetic rats. Diabetes 54:2882–2890PubMedCrossRefGoogle Scholar
  12. 12.
    Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR, Del Sal G, Pelicci PG, Rizzuto R (2007) Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659–663PubMedCrossRefGoogle Scholar
  13. 13.
    Amos AF, McCarty DJ, Zimmet P (1997) The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 14(Suppl 5):S1–85PubMedGoogle Scholar
  14. 14.
    King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431PubMedCrossRefGoogle Scholar
  15. 15.
  16. 16.
    Mak KH, Moliterno DJ, Granger CB, Miller DP, White HD, Wilcox RG, Califf RM, Topol EJ (1997) Influence of diabetes mellitus on clinical outcome in the thrombolytic era of acute myocardial infarction. GUSTO-I Investigators. Global utilization of streptokinase and tissue plasminogen activator for occluded coronary arteries. J Am Coll Cardiol 30:171–179. doi: S0735109797001186[pii] PubMedCrossRefGoogle Scholar
  17. 17.
    Malmberg K, Yusuf S, Gerstein HC, Brown J, Zhao F, Hunt D, Piegas L, Calvin J, Keltai M, Budaj A (2000) Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) registry. Circulation 102:1014–1019PubMedGoogle Scholar
  18. 18.
    Norhammar A, Tenerz A, Nilsson G, Hamsten A, Efendic S, Ryden L, Malmberg K (2002) Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet 359:2140–2144. doi: S0140-6736(02)09089-X[pii]10.1016/S0140-6736(02)09089-X PubMedCrossRefGoogle Scholar
  19. 19.
    Bartnik M, Ryden L, Ferrari R, Malmberg K, Pyorala K, Simoons M, Standl E, Soler-Soler J, Ohrvik J (2004) The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe. The Euro Heart Survey on diabetes and the heart. Eur Heart J 25:1880–1890. doi: S0195-668X(04)00514-7[pii]10.1016/j.ehj.2004.07.027 PubMedCrossRefGoogle Scholar
  20. 20.
    Howard BV, Rodriguez BL, Bennett PH, Harris MI, Hamman R, Kuller LH, Pearson TA, Wylie-Rosett J (2002) Prevention conference VI: diabetes and cardiovascular disease: writing group I: epidemiology. Circulation 105:e132–e137PubMedCrossRefGoogle Scholar
  21. 21.
    Coutinho M, Gerstein HC, Wang Y, Yusuf S (1999) The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95, 783 individuals followed for 12.4 years. Diabetes Care 22:233–240PubMedCrossRefGoogle Scholar
  22. 22.
    The Diabetes Control and Complications (DCCT) Research Group (1995) Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 47:1703–1720CrossRefGoogle Scholar
  23. 23.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853. doi: S0140673698070196[pii] CrossRefGoogle Scholar
  24. 24.
    Thrainsdottir IS, Aspelund T, Thorgeirsson G, Gudnason V, Hardarson T, Malmberg K, Sigurdsson G, Ryden L (2005) The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care 28:612–616. doi: 28/3/612[pii] PubMedCrossRefGoogle Scholar
  25. 25.
    Tesfamariam B, Brown ML, Cohen RA (1991) Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest 87:1643–1648PubMedCrossRefGoogle Scholar
  26. 26.
    Williams SB, Goldfine AB, Timimi FK, Ting HH, Roddy MA, Simonson DC, Creager MA (1998) Acute hyperglycemia attenuates endothelium-dependent vasodilation in humans in vivo. Circulation 97:1695–1701PubMedGoogle Scholar
  27. 27.
    Di Mario U, Pugliese G (2001) 15th Golgi lecture: from hyperglycemia to the dysregulation of vascular remodelling in diabetes. Diabetologia 44:674–692PubMedCrossRefGoogle Scholar
  28. 28.
    Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T (1996) Oxidative damage to DNA in diabetes mellitus. Lancet 347:444–445PubMedCrossRefGoogle Scholar
  29. 29.
    Kouroedov A, Eto M, Joch H, Volpe M, Luscher TF, Cosentino F (2004) Selective inhibition of protein kinase Cbeta2 prevents acute effects of high glucose on vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 110:91–96PubMedCrossRefGoogle Scholar
  30. 30.
    Nemoto S, Combs CA, French S, Ahn BH, Fergusson MM, Balaban RS, Finkel T (2006) The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. J Biol Chem 281:10555–10560PubMedCrossRefGoogle Scholar
  31. 31.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790PubMedCrossRefGoogle Scholar
  32. 32.
    Pagnin E, Fadini G, de Toni R, Tiengo A, Calo L, Avogaro A (2005) Diabetes induces p66shc gene expression in human peripheral blood mononuclear cells: relationship to oxidative stress. J Clin Endocrinol Metab 90:1130–1136PubMedCrossRefGoogle Scholar
  33. 33.
    Abraham NG, Rezzani R, Rodella L, Kruger A, Taller D, Li Volti G, Goodman AI, Kappas A (2004) Overexpression of human heme oxygenase-1 attenuates endothelial cell sloughing in experimental diabetes. Am J Physiol 287:H2468–H2477CrossRefGoogle Scholar
  34. 34.
    Menini S, Amadio L, Oddi G, Ricci C, Pesce C, Pugliese F, Giorgio M, Migliaccio E, Pelicci P, Iacobini C, Pugliese G (2006) Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress. Diabetes 55:1642–1650PubMedCrossRefGoogle Scholar
  35. 35.
    Galderisi M, Anderson KM, Wilson PW, Levy D (1991) Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 68:85–89. doi: 0002-9149(91)90716-X[pii] PubMedCrossRefGoogle Scholar
  36. 36.
    Coughlin SS, Pearle DL, Baughman KL, Wasserman A, Tefft MC (1994) Diabetes mellitus and risk of idiopathic dilated cardiomyopathy. The Washington, DC dilated cardiomyopathy study. Ann Epidemiol 4:67–74PubMedCrossRefGoogle Scholar
  37. 37.
    Coughlin SS, Tefft MC (1994) The epidemiology of idiopathic dilated cardiomyopathy in women: the Washington DC dilated cardiomyopathy study. Epidemiology 5:449–455PubMedCrossRefGoogle Scholar
  38. 38.
    Bell DS (1995) Diabetic cardiomyopathy. A unique entity or a complication of coronary artery disease? Diabetes Care 18:708–714PubMedCrossRefGoogle Scholar
  39. 39.
    Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907PubMedGoogle Scholar
  40. 40.
    Borow KM, Jaspan JB, Williams KA, Neumann A, Wolinski-Walley P, Lang RM (1990) Myocardial mechanics in young adult patients with diabetes mellitus: effects of altered load, inotropic state and dynamic exercise. J Am Coll Cardiol 15:1508–1517PubMedGoogle Scholar
  41. 41.
    Jarnert C, Melcher A, Caidahl K, Persson H, Ryden L, Eriksson MJ (2008) Left atrial velocity vector imaging for the detection and quantification of left ventricular diastolic function in type 2 diabetes. Eur J Heart Fail 10:1080–1087. doi: S1388-9842(08)00415-7[pii]10.1016/j.ejheart.2008.08.012 PubMedCrossRefGoogle Scholar
  42. 42.
    Francis GS (2001) Diabetic cardiomyopathy: fact or fiction? Heart 85:247–248PubMedCrossRefGoogle Scholar
  43. 43.
    Vinten-Johansen J (2000) Physiological effects of peroxynitrite: potential products of the environment. Circ Res 87:170–172PubMedGoogle Scholar
  44. 44.
    Sowers JR (2002) Hypertension, angiotensin II, and oxidative stress. N Engl J Med 346:1999–2001. doi: 10.1056/NEJMe020054 346/25/1999[pii] PubMedCrossRefGoogle Scholar
  45. 45.
    Malhotra A, Kang BP, Cheung S, Opawumi D, Meggs LG (2001) Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes 50:1918–1926PubMedCrossRefGoogle Scholar
  46. 46.
    Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P (2000) Myocardial cell death in human diabetes. Circ Res 87:1123–1132PubMedGoogle Scholar
  47. 47.
    Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938–1948PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Pietro Francia
    • 1
  • Francesco Cosentino
    • 1
    • 3
    • 4
  • Marzia Schiavoni
    • 1
  • Yale Huang
    • 1
  • Enrico Perna
    • 1
  • Giovani G. Camici
    • 3
    • 4
  • Thomas F. Lüscher
    • 3
    • 4
  • Massimo Volpe
    • 1
    • 2
    Email author
  1. 1.Cardiology, 2nd Faculty of MedicineSapienza University of Rome, Sant’Andrea HospitalRomeItaly
  2. 2.I.R.C.C.S. NeuromedPozzilliItaly
  3. 3.Cardiology and Cardiovascular ResearchUniversity HospitalZurichSwitzerland
  4. 4.Institute of PhysiologyUniversity of ZurichZurichSwitzerland

Personalised recommendations