Skip to main content
Log in

The cytotoxic activity of the phage E protein suppress the growth of murine B16 melanomas in vitro and in vivo

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Novel treatment modalities, including gene therapy, are needed for patients with advanced melanoma. The E gene from the phage ϕX174 encodes a 91-aa protein which lyses Escherichia coli by formation of a transmembrane tunnel structure. To evaluate whether this E gene has a cytotoxic impact on melanoma cells in vitro and in vivo, and could therefore be used as a new therapeutic strategy for this tumor type, we selected the B16-F10 murine melanoma cell line as a model. We used a nonviral gene delivery approach (pcDNA3.1/E plasmid) to study the inhibition of melanoma cells' proliferation in vitro and direct intratumoral injection of pcDNA3.1/E complexed with jetPEI to deliver E cDNA to rapidly growing murine melanomas, and found that the E gene has both a strong antiproliferative effect in B16-F10 cells in vitro and induces an efficient decrease in melanoma tumor volume in vivo (90% in 15 days). Interestingly, the GFP-E fusion protein expressed in melanoma cells was located in the mitochondria. In vitro and in vivo analysis demonstrated significant functional and morphological mitochondrial alterations accompanied by a significant increase of cytochrome c and active caspase-3 and -9 in transfected cells, which suggests that tumoral cell death is mediated by the mitochondrial apoptotic pathway. These results show that E gene expression in melanoma cells has an extraordinary antitumor effect, which means it may be a new candidate for an effective strategy for melanoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Katipamula R, Markovic SN (2008) Emerging therapies for melanoma. Exper Rev Anticancer Ther 8:553–560

    Article  CAS  Google Scholar 

  2. Eberle J, Fecker LF, Hossini AM, Kurbanov BM, Fechner H (2008) Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma. Exp Dermatol 17:1–11

    PubMed  CAS  Google Scholar 

  3. Altaner C (2008) Prodrug cancer gene therapy. Cancer Lett 270:191–201

    Article  PubMed  CAS  Google Scholar 

  4. Slade N, Galetić I, Kapitanović S, Pavelić J (2001) The efficacy of retroviral herpes simplex virus thymidine kinase gene transfer and ganciclovir treatment on the inhibition of melanoma growth in vitro and in vivo. Arch Dermatol Res 293:484–490

    Article  PubMed  CAS  Google Scholar 

  5. Liu Y, Deisseroth A (2006) Oncolytic adenoviral vector carrying the cytosine deaminase gene for melanoma gene therapy. Cancer Gene Ther 13:845–855

    Article  PubMed  CAS  Google Scholar 

  6. Showalter SL, Huang YH, Witkiewicz A, Costantino CL, Yeo CJ, Green JJ, Langer R, Anderson DG, Sawicki JA, Brody JR (2008) Nanoparticulate delivery of diphtheria toxin DNA effectively kills Mesothelin expressing pancreatic cancer cells. Cancer Biol Ther 7:1584–1590

    Article  PubMed  CAS  Google Scholar 

  7. Yang WS, Park SO, Yoon AR, Yoo JY, Kim MK, Yun CO, Kim CW (2006) Suicide cancer gene therapy using pore-forming toxin, streptolysin O. Mol Cancer Ther 5:1610–1619

    Article  PubMed  CAS  Google Scholar 

  8. Geden SE, Gardner RA, Fabbrini MS, Ohashi M, Phanstiel Iv O, Teter K (2007) Lipopolyamine treatment increases the efficacy of intoxication with saporin and an anticancer saporin conjugate. FEBS J 274:4825–4836

    Article  PubMed  CAS  Google Scholar 

  9. Zhao JM, Wen ZJ, Li Q, Wang Y, Wu H, Xu J, Chen X, Wu Y, Fan L, Yang H, Liu T, Ding Z, Du X, Diao P, Li J, Wu H, Kan B, Lei S, Deng H, Mao Y, Zhao X, Wei Y (2008) A promising cancer gene therapy agent based on the matrix protein of vesicular stomatitis virus. FASEB J 22:4272–4280

    Article  PubMed  CAS  Google Scholar 

  10. Brandtner EM, Kodajova P, Hlavaty J, Jandl G, Tabotta W, Salmons B, Günzburg WH, Hohenadl C (2008) Reconstituting retroviral (ReCon) vectors facilitating delivery of cytotoxic genes in cancer gene therapy approaches. J Gene Med 10:113–122

    Article  PubMed  CAS  Google Scholar 

  11. Young KD, Young R (1982) Lytic action of cloned wX174 gene E. J Virol 44:993–1002

    PubMed  CAS  Google Scholar 

  12. Bernhardt TG, Roof WD, Young R (2000) Genetic evidence that the bacteriophage ϕX174 lysis protein inhibits cell wall synthesis. PNAS 97:4297–4302

    Article  PubMed  CAS  Google Scholar 

  13. Mendel S, Holbourn JM, Schouten JA, Bugg TDH (2006) Interaction of the transmembrane domain of lysis protein E from bacteriophage ϕX174 with bacterial translocase MraY and peptidyl-prolyl isomerase SlyD. Microbiology 152:2959–2967

    Article  PubMed  Google Scholar 

  14. Witte A, Wanner G, Lubitz W, Höltje JV (1998) Effect of phi X174 protein E-mediated lysis on mureincomposition of Scherichia coli. FEMS Microbiol Lett 164:149–157

    PubMed  CAS  Google Scholar 

  15. Sanchez-Perez L, Gough M, Qiao J, Thanarajasingam U, Kottke T, Ahmed A, Thompson JM, Maria Diaz R, Vile RG (2007) Synergy of adoptive T-cell therapy and intratumoral suicide gene therapy is mediated by host NK cells. Gene Ther 14:998–1009

    Article  PubMed  CAS  Google Scholar 

  16. Zamboni S, Mallano A, Flego M, Ascione A, Dupuis ML, Gellini M, Barca S, Cianfriglia M (2008) Genetic construction, expression, and characterization of a single chain anti-CEA antibody fused to cytosine deaminase from yeast. Int J Oncol 32:1245–1251

    Article  PubMed  CAS  Google Scholar 

  17. McKeown SR, Ward C, Robson T (2004) Gene-directed enzyme prodrug therapy: a current assessment. Curr Opin Mol Ther 6:421–435

    PubMed  CAS  Google Scholar 

  18. Frankel A, Kreitman R, Sausville E (2000) Targeted toxins. Clin Cancer Res 6:326–334

    PubMed  CAS  Google Scholar 

  19. McCray AN, Ugen KE, Muthumani K, Kim JJ, Weiner DB, Heller R (2006) Complete regression of established subcutaneous B16 murine melanoma tumors after delivery of an HIV-1 Vpr-expressing plasmid by in vivo electroporation. Mol Ther 14:647–655

    Article  PubMed  CAS  Google Scholar 

  20. Zarovni N, Vago R, Soldá T, Monaco L, Fabbrini MS (2007) Saporin as a novel suicide gene in anticancer gene therapy. Cancer Gene Ther 14:165–173

    Article  PubMed  CAS  Google Scholar 

  21. Boulaiz H, Prados J, Melguizo C, Marchal JA, Carrillo E, Peran M, Rodríguez-Serrano F, Martínez-Amat A, Caba O, Hita F, Concha A, Aránega A (2008) Tumour malignancy loss and cell differentiation are associated with induction of gef gene in human melanoma cells. Br J Dermatol 159:370–378

    Article  PubMed  CAS  Google Scholar 

  22. Agu CA, Klei R, Schwab S, König-Schuster M, Kodajova P, Ausserlechner M, Binishofer B, Bläsi U, Salmons B, Günzburg WH, Hohenadl C (2006) The cytotoxic activity of the bacteriophage lambda-holin protein reduces tumour growth rates in mammary cancer cell xenograft models. J Gene Med 8:229–241

    Article  PubMed  CAS  Google Scholar 

  23. Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151

    Article  PubMed  CAS  Google Scholar 

  24. Emelyanov VV (2003) Mitochondrial connection to the origin of the eukaryotic cell. Eur J Biochem 270:1599–1618

    Article  PubMed  CAS  Google Scholar 

  25. Kim R (2005) Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103:1551–1560

    Article  PubMed  CAS  Google Scholar 

  26. Moreira JN, Santos A, Simões S (2006) Bcl-2-targeted antisense therapy (Oblimersen sodium): towards clinical reality. Rev Recent Clin Trials 1:217–235

    Article  PubMed  CAS  Google Scholar 

  27. Fernandes N, Jung M, Daoud A, Mo H (2008) Biphenylalkylacetylhydroquinone ethers suppress the proliferation of murine B16 melanoma cells. Anticancer Res 28:1005–1012

    PubMed  CAS  Google Scholar 

  28. Hu WP, Yu HS, Chen YR, Tsai YM, Chen YK, Liao CC, Chang LS, Wang JJ (2008) Synthesis and biological evaluation of thiobenzanilides as anticancer agents. Bioorg Med Chem 16:5295–5302

    Article  PubMed  CAS  Google Scholar 

  29. Kurozumi K, Tamiya T, Ono Y, Otsuka S, Kambara H, Adachi Y, Ichikawa T, Hamada H, Ohmoto T (2004) Apoptosis induction with 5-fluorocytosine/cytosine deaminase gene therapy for human malignant glioma cells mediated by adenovirus. J Neurooncol 66:117–127

    Article  PubMed  Google Scholar 

  30. Gopinath P, Ghosh SS (2007) Apoptotic induction with bifunctional E.coli cytosine deaminase-uracil phosphoribosyltransferase mediated suicide gene therapy is synergized by curcumin treatment in vitro. Mol Biotechnol 39:39–48

    Article  PubMed  CAS  Google Scholar 

  31. Shibata MA, Horiguchi T, Morimoto J, Otsuki Y (2003) Massive apoptotic cell death in chemically induced rat urinary bladder carcinomas following in situ HSVtk electrogene transfer. J Gene Med 5:219–231

    Article  PubMed  CAS  Google Scholar 

  32. Keeble JA, Gilmore AP (2007) Apoptosis commitment–translating survival signals into decisions on mitochondria. Cell Res 17:976–984

    Article  PubMed  CAS  Google Scholar 

  33. Smalley KS, Contractor R, Haass NK, Lee JT, Nathanson KL, Medina CA, Flaherty KT, Herlyn M (2007) Ki67 expression levels are a better marker of reduced melanoma growth following MEK inhibitor treatment than phospho-ERK levels. Br J Cancer 96:445–449

    Article  PubMed  CAS  Google Scholar 

  34. Prados J, Melguizo C, Rama A, Ortiz R, Boulaiz H, Rodriguez-Serrano F, Caba O, Rodriguez-Herva JJ, Ramos JL, Aranega A (2008) Combined therapy using suicide gef gene and paclitaxel enhances growth inhibition of multicellular tumour spheroids of A-549 human lung cancer cells. Int J Oncol 33:121–127

    PubMed  CAS  Google Scholar 

  35. Fecker LF, Geilen CC, Hossini AM, Schwarz C, Fechner H, Bartlett DL, Orfanos CE, Eberle J (2005) Selective induction of apoptosis in melanoma cells by tyrosinase promoter-controlled CD95 ligand overexpression. J Invest Dermatol 124:221–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ana B. Martínez-Cruz and Dr. G. Ortiz Ferrón for excellent technical assistance with the TUNEL assay and for providing the GFP gene. We are also thankful to Dr. F. O’Valle and Dr. A. Soler (Department of Anatomopathology and Physiology, Granada University) for their help and suggestions. This study was supported by the Fondo Investigaciones Sanitarias Seguridad Social (FIS; project no. PI041372) and by Granada University (project no. UGR-30 B364 1101/2007) and MEC (FPU predoctoral fellowship).

Conflict of interest statement

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Prados.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz, R., Prados, J., Melguizo, C. et al. The cytotoxic activity of the phage E protein suppress the growth of murine B16 melanomas in vitro and in vivo. J Mol Med 87, 899–911 (2009). https://doi.org/10.1007/s00109-009-0493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0493-9

Keywords

Navigation