Apolipoprotein D (APOD) is a putative biomarker of androgen receptor function in androgen insensitivity syndrome

  • Mahesh Appari
  • Ralf Werner
  • Lutz Wünsch
  • Gunnar Cario
  • Janos Demeter
  • Olaf Hiort
  • Felix Riepe
  • James D. Brooks
  • Paul-Martin HolterhusEmail author
Original Article


Androgen insensitivity syndrome (AIS) is the most common cause of disorders of sex development usually caused by mutations in the androgen receptor (AR) gene. AIS is characterized by a poor genotype–phenotype correlation, and many patients with clinically presumed AIS do not seem to have mutations in the AR gene. We therefore aimed at identifying a biomarker enabling the assessment of the cellular function of the AR as a transcriptional activator. In the first step, we used complementary DNA (cDNA) microarrays for a genome-wide screen for androgen-regulated genes in two normal male primary scrotal skin fibroblast strains compared to two labia majora fibroblast strains from 46,XY females with complete AIS (CAIS). Apolipoprotein D (APOD) and two further transcripts were significantly upregulated by dihydrotestosterone (DHT) in scrotum fibroblasts, while CAIS labia majora cells were unresponsive. Microarray data were well correlated with quantitative real-time polymerase chain reaction (qRT-PCR; R = 0.93). Subsequently, we used qRT-PCR in independent new cell cultures and confirmed the significant DHT-dependent upregulation of APOD in five normal scrotum strains [13.5 ± 8.2 (SD)-fold] compared with three CAIS strains (1.2 ± 0.7-fold, p = 0.028; t test) and six partial androgen insensitivity syndrome strains (2 ± 1.3-fold, p = 0.034; t test). Moreover, two different 17ß-hydroxysteroid dehydrogenase III deficiency labia majora strains showed APOD induction in the range of normal scrotum (9.96 ± 1.4-fold), supporting AR specificity. Therefore, qRT-PCR of APOD messenger RNA transcription in primary cultures of labioscrotal skin fibroblasts is a promising tool for assessing AR function, potentially allowing a function-based diagnostic evaluation of AIS in the future.


Androgen insensitivity syndrome Disorders of sex development Apolipoprotein D Genital fibroblasts 



Apolipoprotein D


Androgen receptor


Androgen insensitivity syndrome


Partial androgen insensitivity syndrome


Complete androgen insensitivity syndrome






Supplementary information

Microarray data can be accessed in the GEO database (


This study was funded by the German Research Foundation (DFG, KFO111-C, and Ho2073/5-1 and Ho2073/5-2 to PMH). We thank Brigitte Karvelis, Gila Hoffman, Kerstin Övermöhle, and Tanja Dahm for excellent technical assistance. We are indebted to the staff of the Stanford Microarray Database (SMD), without whom the project would not have been realized.


  1. 1.
    Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS (1995) Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr Rev 16:271–321PubMedGoogle Scholar
  2. 2.
    Deeb A, Mason C, Lee YS, Hughes IA (2005) Correlation between genotype, phenotype and sex of rearing in 111 patients with partial androgen insensitivity syndrome. Clin Endocrinol (Oxf) 63:56–62CrossRefGoogle Scholar
  3. 3.
    Ghali SA, Gottlieb B, Lumbroso R, Beitel LK, Elhaji Y, Wu J, Pinsky L, Trifiro MA (2003) The use of androgen receptor amino/carboxyl-terminal interaction assays to investigate androgen receptor gene mutations in subjects with varying degrees of androgen insensitivity. J Clin Endocrinol Metab 88:2185–2193PubMedCrossRefGoogle Scholar
  4. 4.
    Quigley CA, Tan JA, He B, Zhou ZX, Mebarki F, Morel Y, Forest MG, Chatelain P, Ritzén EM, French FS, Wilson EM (2004) Partial androgen insensitivity with phenotypic variation caused by androgen receptor mutations that disrupt activation function 2 and the NH(2)- and carboxyl-terminal interaction. Mech Ageing Dev 125:683–695PubMedCrossRefGoogle Scholar
  5. 5.
    Umar A, Berrevoets CA, Van NM, van Leeuwen M, Verbiest M, Kleijer WJ, Dooijes D, Grootegoed JA, Drop SL, Brinkmann AO (2005) Functional analysis of a novel androgen receptor mutation, Q902K, in an individual with partial androgen insensitivity. J Clin Endocrinol Metab 90:507–515PubMedCrossRefGoogle Scholar
  6. 6.
    Adachi M, Takayanagi R, Tomura A, Imasaki K, Kato S, Goto K, Yanase T, Ikuyama S, Nawata H (2000) Androgen-insensitivity syndrome as a possible coactivator disease. N Engl J Med 21:856–862CrossRefGoogle Scholar
  7. 7.
    Holterhus PM, Werner R, Hoppe U, Bassler J, Korsch E, Ranke MB, Dörr HG, Hiort O (2005) Molecular features and clinical phenotypes in androgen insensitivity syndrome in the absence and presence of androgen receptor gene mutations. J Mol Med 83:1005–1013PubMedCrossRefGoogle Scholar
  8. 8.
    Rodien P, Mebarki F, Mowszowicz I, Chaussain JL, Young J, Morel Y, Schaison G (1996) Different phenotypes in a family with androgen insensitivity caused by the same M780I point mutation in the androgen receptor gene. J Clin Endocrinol Metab 81:2994–2998PubMedCrossRefGoogle Scholar
  9. 9.
    Evans BA, Hughes IA, Bevan CL, Patterson MN, Gregory JW (1997) Phenotypic diversity in siblings with partial androgen insensitivity syndrome. Arch Dis Child 76:529–531PubMedCrossRefGoogle Scholar
  10. 10.
    Holterhus PM, Sinnecker GH, Hiort O (2000) Phenotypic diversity and testosterone-induced normalization of mutant L712F androgen receptor function in a kindred with androgen insensitivity. J Clin Endocrinol Metab 85:3245–3250PubMedCrossRefGoogle Scholar
  11. 11.
    McPhaul MJ, Marcelli M, Zoppi S, Griffin JE, Wilson JD (1993) Genetic basis of endocrine disease. 4. The spectrum of mutations in the androgen receptor gene that causes androgen resistance. J Clin Endocrinol Metab 76:17–23PubMedCrossRefGoogle Scholar
  12. 12.
    Sinnecker G, Köhler S (1989) Sex hormone-binding globulin response to the anabolic steroid stanozolol: evidence for its suitability as a biological androgen sensitivity test. J Clin Endocrinol Metab 68:1195–1200PubMedCrossRefGoogle Scholar
  13. 13.
    Sinnecker GH, Hiort O, Nitsche EM, Holterhus PM, Kruse K (1997) Functional assessment and clinical classification of androgen sensitivity in patients with mutations of the androgen receptor gene. German Collaborative Intersex Study Group. Eur J Pediatr 156:7–14PubMedCrossRefGoogle Scholar
  14. 14.
    Berkovitz GD, Carter KM, Brown TR, Migeon CJ (1990) Testosterone lowers aromatase activity in cultured human genital skin fibroblasts. Mol Cell Endocrinol 69:187–197PubMedCrossRefGoogle Scholar
  15. 15.
    Stillman SC, Evans BA, Hughes IA (1991) Androgen dependent stimulation of aromatase activity in genital skin fibroblasts from normal and patients with androgen insensitivity. Clin Endocrinol (Oxf) 35:533–538CrossRefGoogle Scholar
  16. 16.
    Nitsche EM, Moquin A, Adams PS, Guenette RS, Lakins JN, Sinnecker GH, Kruse K, Tenniswood MP (1996) Differential display RT PCR of total RNA from human foreskin fibroblasts for investigation of androgen-dependent gene expression. Am J Med Genet 63:231–238PubMedCrossRefGoogle Scholar
  17. 17.
    Holterhus PM, Hiort O, Demeter J, Brown PO, Brooks JD (2003) Differential gene-expression patterns in genital fibroblasts of normal males and 46,XY females with androgen insensitivity syndrome: evidence for early programming involving the androgen receptor. Genome Biol 4:R37PubMedCrossRefGoogle Scholar
  18. 18.
    Bebermeier JH, Brooks JD, DePrimo SE, Werner R, Deppe U, Demeter J, Hiort O, Holterhus PM (2006) Cell-line and tissue-specific signatures of androgen receptor-coregulator transcription. J Mol Med 84:919–931PubMedCrossRefGoogle Scholar
  19. 19.
    Holterhus PM, Deppe U, Werner R, Richter-Unruh A, Bebermeier JH, Wünsch L, Krege S, Schweikert HU, Demeter J, Riepe F, Hiort O, Brooks JD (2007) Intrinsic androgen-dependent gene expression patterns revealed by comparison of genital fibroblasts from normal males and individuals with complete and partial androgen insensitivity syndrome. BMC Genomics 8:376PubMedCrossRefGoogle Scholar
  20. 20.
    Izbicka E, MacDonald JR, Davidson K, Lawrence RA, Gomez L, Von Hoff DD (1999) 5, 6 Dihydro-5′-azacytidine (DHAC) restores androgen responsiveness in androgen-insensitive prostate cancer cells. Anticancer Res 19:1285–1291PubMedGoogle Scholar
  21. 21.
    Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AH, Günther T, Buettner R, Schüle R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 15:436–439Google Scholar
  22. 22.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868PubMedCrossRefGoogle Scholar
  23. 23.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRefGoogle Scholar
  24. 24.
    Hiort O, Sinnecker GH, Holterhus PM, Nitsche EM, Kruse K (1996) The clinical and molecular spectrum of androgen insensitivity syndromes. Am J Med Genet 63:218–222PubMedCrossRefGoogle Scholar
  25. 25.
    Simard J, Veilleux R, de Launoit Y, Haagensen DE, Labrie F (1991) Stimulation of apolipoprotein D secretion by steroids coincides with inhibition of cell proliferation in human LNCaP prostate cancer cells. Cancer Res 51:4336–4341PubMedGoogle Scholar
  26. 26.
    Lambert J, Provost PR, Marcel YL, Rassart E (1993) Structure of the human apolipoprotein D gene promoter region. Biochim Biophys Acta 1172:190–192PubMedGoogle Scholar
  27. 27.
    Jüttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 91:11797–11801PubMedCrossRefGoogle Scholar
  28. 28.
    Do Carmo S, Séguin D, Milne R, Rassart E (2002) Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. J Biol Chem 277:5514–5523PubMedCrossRefGoogle Scholar
  29. 29.
    Provost PR, Marcel YL, Milne RW, Weech PK, Rassart E (1991) Apolipoprotein D transcription occurs specifically in nonproliferating quiescent and senescent fibroblast cultures. FEBS Lett 290:139–141PubMedCrossRefGoogle Scholar
  30. 30.
    Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14PubMedGoogle Scholar
  31. 31.
    Zeng C, Spielman AI, Vowels BR, Leyden JJ, Biemann K, Preti G (1996) A human axillary odorant is carried by apolipoprotein D. Proc Natl Acad Sci USA 93:6626–6630PubMedCrossRefGoogle Scholar
  32. 32.
    Bigiani A, Mucignat-Caretta C, Montani G, Tirindelli R (2005) Pheromone reception in mammals. Rev Physiol Biochem Pharmacol 154:1–35PubMedCrossRefGoogle Scholar
  33. 33.
    Preti G, Cutler WB, Garcia CR, Huggins GR, Lawley HJ (1986) Human axillary secretions influence women's menstrual cycles: the role of donor extract from men. Horm Behav 20:463–473PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mahesh Appari
    • 1
  • Ralf Werner
    • 3
  • Lutz Wünsch
    • 4
  • Gunnar Cario
    • 2
  • Janos Demeter
    • 5
  • Olaf Hiort
    • 3
  • Felix Riepe
    • 1
  • James D. Brooks
    • 6
  • Paul-Martin Holterhus
    • 1
    Email author
  1. 1.Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University-Hospital Schleswig-HolsteinChristian Albrechts University of KielKielGermany
  2. 2.Department of Pediatrics, University-Hospital Schleswig-HolsteinChristian Albrechts University of KielKielGermany
  3. 3.Department of Pediatric and Adolescent Medicine, University-Hospital Schleswig-HolsteinUniversity of LübeckLübeckGermany
  4. 4.Department of Pediatric SurgeryUniversity Hospital Schleswig-HolsteinLübeckGermany
  5. 5.Department of BiochemistryStanford University School of MedicineStanfordUSA
  6. 6.Department of UrologyStanford University School of MedicineStanfordUSA

Personalised recommendations