Journal of Molecular Medicine

, Volume 87, Issue 3, pp 229–234

Association of the co-stimulator OX40L with systemic lupus erythematosus

  • Harinder Manku
  • Deborah S. Cunninghame Graham
  • Timothy J. Vyse


The archetypal systemic autoimmune disease systemic lupus erythematosus (SLE) has incompletely understood pathogenesis, although evidence suggests a strong genetic component. Unlike organ-specific autoimmune diseases such as type 1 diabetes, the genetics of lupus are not as dominated by the effect of a single locus. Undoubtedly, the major histocompatibility complex is the greatest and most consistent genetic risk factor in SLE susceptibility; however, recent candidate gene and whole genome association (WGA) studies have identified several other genes that are likely to advance our understanding of this complex disease. One of these, the TNF superfamily member OX40L, interacts with its unique receptor OX40, to maintain T cell memory by providing a late-stage co-stimulatory signal to sustain the survival of activated T cells. The precise immunological consequences are yet to be determined; however, signalling through OX40-OX40L is bidirectional and the reverse signalling pathway via OX40L may quantitatively enhance B cell proliferation to augment the B cell hyperactivity found in SLE. Like OX40L, several genes recently identified in WGA studies are components of B cell pathways. Collectively, these genes will help us to unravel the mechanisms by which aberrant B cell signalling results in lupus pathogenesis.


Lupus erythematosus SLE Genetics Autoimmune disease MHC whole genome association WGA 


  1. 1.
    Cunninghame Graham DS, Graham RR, Manku H et al (2008) Polymorphism at the TNF superfamily gene OX40L confers susceptibility to systemic lupus erythematosus. Nat Genet 40:83–89PubMedCrossRefGoogle Scholar
  2. 2.
    Hikami K, Tsuchiya N, Tokunaga K (2000) New variations in human OX40 ligand (CD134L) gene. Genes Immun 1:521–522PubMedCrossRefGoogle Scholar
  3. 3.
    Jacob CO, Reiff A, Armstrong DL et al (2007) Identification of novel susceptibility genes in childhood-onset systemic lupus erythematosus using a uniquely designed candidate gene pathway platform. Arthritis Rheum 56:4164–4173PubMedCrossRefGoogle Scholar
  4. 4.
    Stuber E, Neurath M, Calderhead D et al (1995) Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2:507–521PubMedCrossRefGoogle Scholar
  5. 5.
    Patschan S, Dolff S, Kribben A et al (2006) CD134 expression on CD4+ T cells is associated with nephritis and disease activity in patients with systemic lupus erythematosus. Clin Exp Immunol 145:235–242PubMedCrossRefGoogle Scholar
  6. 6.
    Aten J, Roos A, Claessen N et al (2000) Strong and selective glomerular localization of CD134 ligand and TNF receptor-1 in proliferative lupus nephritis. J Am Soc Nephrol 11:1426–1438PubMedGoogle Scholar
  7. 7.
    Compaan DM, Hymowitz SG (2006) The crystal structure of the costimulatory OX40-OX40L complex. Structure 14:1321–1330PubMedCrossRefGoogle Scholar
  8. 8.
    Linton PJ, Bautista B, Bierderman E et al (2003) Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med 197:875–883PubMedCrossRefGoogle Scholar
  9. 9.
    Chen AI, McAdam AJ, Buhlmann JE et al (1999) Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11:689–698PubMedCrossRefGoogle Scholar
  10. 10.
    Kato H, Kojima H, Ishii N et al (2004) Essential role of OX40L on B cells in persistent alloantibody production following repeated alloimmunizations. J Clin Immunol 24:237–248PubMedCrossRefGoogle Scholar
  11. 11.
    Imura A, Hori T, Imada K et al (1996) The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med 183:2185–2195PubMedCrossRefGoogle Scholar
  12. 12.
    Wang HC, Klein JR (2001) Multiple levels of activation of murine CD8(+) intraepithelial lymphocytes defined by OX40 (CD134) expression: effects on cell-mediated cytotoxicity, IFN-gamma, and IL-10 regulation. J Immunol 167:6717–6723PubMedGoogle Scholar
  13. 13.
    Kim MY, Gaspal FM, Wiggett HE et al (2003) CD4(+)CD3(−) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18:643–654PubMedCrossRefGoogle Scholar
  14. 14.
    Lane P, Kim MY, Withers D et al (2008) Lymphoid tissue inducer cells in adaptive CD4 T cell dependent responses. Semin Immunol 20:159–163PubMedCrossRefGoogle Scholar
  15. 15.
    Godfrey WR, Fagnoni FF, Harara MA et al (1994) Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J Exp Med 180:757–762PubMedCrossRefGoogle Scholar
  16. 16.
    Weinberg AD, Wegmann KW, Funatake C et al (1999) Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 162:1818–1826PubMedGoogle Scholar
  17. 17.
    Weinberg AD, Bourdette DN, Sullivan TJ et al (1996) Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med 2:183–189PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshioka T, Nakajima A, Akiba H et al (2000) Contribution of OX40/OX40 ligand interaction to the pathogenesis of rheumatoid arthritis. Eur J Immunol 30:2815–2823PubMedCrossRefGoogle Scholar
  19. 19.
    Malmstrom V, Shipton D, Singh B et al (2001) CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 166:6972–6981PubMedGoogle Scholar
  20. 20.
    Martin-Orozco N, Chen Z, Poirot L et al (2003) Paradoxical dampening of anti-islet self-reactivity but promotion of diabetes by OX40 ligand. J Immunol 171:6954–6960PubMedGoogle Scholar
  21. 21.
    Murata K, Nose M, Ndhlovu LC et al (2002) Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J Immunol 169:4628–4636PubMedGoogle Scholar
  22. 22.
    Seshasayee D, Lee WP, Zhou M et al (2007) In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J Clin Invest 117:3868–3878PubMedCrossRefGoogle Scholar
  23. 23.
    Barrat FJ, Cua DJ, Boonstra A et al (2002) In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 195:603–616PubMedCrossRefGoogle Scholar
  24. 24.
    Wang X, Ria M, Kelmenson PM et al (2005) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37:365–372PubMedCrossRefGoogle Scholar
  25. 25.
    So T, Song J, Sugie K et al (2006) Signals from OX40 regulate nuclear factor of activated T cells c1 and T cell helper 2 lineage commitment. Proc Natl Acad Sci U S A 103:3740–3745PubMedCrossRefGoogle Scholar
  26. 26.
    Song J, So T, Cheng M et al (2005) Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity 22:621–631PubMedCrossRefGoogle Scholar
  27. 27.
    Kozyrev SV, Abelson AK, Wojcik J et al (2008) Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40:211–216PubMedCrossRefGoogle Scholar
  28. 28.
    Brown EE, Edberg JC, Kimberly RP (2007) Fc receptor genes and the systemic lupus erythematosus diathesis. Autoimmunity 40:567–581PubMedCrossRefGoogle Scholar
  29. 29.
    Reth M, Wienands J (1997) Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol 15:453–479PubMedCrossRefGoogle Scholar
  30. 30.
    Chu ZT, Tsuchiya N, Kyoguka C et al (2004) Association of Fcgamma receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese: a common susceptibility gene in the Asian populations. Tissue Antigens 63:21–27PubMedCrossRefGoogle Scholar
  31. 31.
    Mackay M, Stanevsky A, Wang T et al (2006) Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J Exp Med 203:2157–2164PubMedCrossRefGoogle Scholar
  32. 32.
    Hsueh RC, Scheuermann RH (2000) Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv Immunol 75:283–316PubMedCrossRefGoogle Scholar
  33. 33.
    Hom G, Graham RR, Modrek B et al (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358:900–909PubMedCrossRefGoogle Scholar
  34. 34.
    Sugawara H, Kurosaki M, Takata M et al (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088PubMedCrossRefGoogle Scholar
  35. 35.
    Graham RR, Cotsapas C, Davies L et al (2008) Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet (in press)Google Scholar
  36. 36.
    Lee EG, Boone DL, Chai S et al (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354PubMedCrossRefGoogle Scholar
  37. 37.
    Musone SL, Taylor KE, Lu TT et al (2008) Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 40:1062–1064PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Harinder Manku
    • 1
  • Deborah S. Cunninghame Graham
    • 1
  • Timothy J. Vyse
    • 1
    • 2
  1. 1.Molecular Genetics and RheumatologyImperial College LondonLondonUK
  2. 2.Rheumatology Section, Division of Medicine, Hammersmith CampusImperial CollegeLondonUK

Personalised recommendations