Journal of Molecular Medicine

, Volume 87, Issue 1, pp 43–51

MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a

  • Yu Zhang
  • Tengfei Chao
  • Ran Li
  • Wei Liu
  • Yang Chen
  • Xingqi Yan
  • Yanhua Gong
  • Bin Yin
  • Wei Liu
  • Boqing Qiang
  • Jizhong Zhao
  • Jiangang Yuan
  • Xiaozhong Peng
Original Article

Abstract

MicroRNAs are ∼21nt single-stranded RNAs and function as regulators of gene expression. Previous studies have shown that microRNAs play crucial roles in tumorigenesis by targeting the mRNAs of oncogenes or tumor suppressors. Here we show that brain-enriched miR-128 is down-regulated in glioma tissues and cell lines when compared to normal brain tissues. Overexpression of miR-128 in glioma cells inhibited cell proliferation. A bioinformatics search revealed a conserved target site within the 3′untranslated region (UTR) of E2F3a, a transcription factor that regulates cell cycle progression. The protein levels of E2F3a in gliomas and normal brain tissues were negatively correlated to the expression levels of miR-128 in these tissues. Overexpression of miR-128 suppressed a luciferase-reporter containing the E2F3a-3′UTR and reduced the level of E2F3a protein in T98G cells. Moreover, knocking down of E2F3a had similar effect as overexpression of miR-128, and overexpression of E2F3a can partly rescue the proliferation inhibition caused by miR-128. Taken together, our study demonstrates that miR-128 can inhibit proliferation of glioma cells through one of its targets, E2F3a.

Keywords

miR-128 E2F3a Glioma Proliferation 

Supplementary material

109_2008_403_MOESM1_ESM.doc (124 kb)
ESM(DOC 124 KB)

References

  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  2. 2.
    Lee YS, Kim HK, Chung S, Kim KS, Dutta A (2005) Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 280:16635–16641PubMedCrossRefGoogle Scholar
  3. 3.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756PubMedCrossRefGoogle Scholar
  4. 4.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science (New York, NY) 303:83–86Google Scholar
  5. 5.
    Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361–52365PubMedCrossRefGoogle Scholar
  6. 6.
    Hipfner DR, Weigmann K, Cohen SM (2002) The bantam gene regulates Drosophila growth. Genetics 161:1527–1537PubMedGoogle Scholar
  7. 7.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36PubMedCrossRefGoogle Scholar
  8. 8.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev 6:259–269CrossRefGoogle Scholar
  9. 9.
    Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358PubMedCrossRefGoogle Scholar
  10. 10.
    Tsantoulis PK, Gorgoulis VG (2005) Involvement of E2F transcription factor family in cancer. Eur J Cancer 41:2403–2414PubMedCrossRefGoogle Scholar
  11. 11.
    DeGregori J (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta 1602:131–150PubMedGoogle Scholar
  12. 12.
    Olsson AY, Feber A, Edwards S, Te Poele R, Giddings I, Merson S, Cooper CS (2007) Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells. Oncogene 26:1028–1037PubMedCrossRefGoogle Scholar
  13. 13.
    Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F, Ferbeyre G, Chartrand P (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282:2135–2143PubMedCrossRefGoogle Scholar
  14. 14.
    Woods K, Thomson JM, Hammond SM (2007) Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 282:2130–2134PubMedCrossRefGoogle Scholar
  15. 15.
    Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104:15472–15477PubMedCrossRefGoogle Scholar
  16. 16.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCrossRefGoogle Scholar
  17. 17.
    Yan X, Chao T, Tu K, Zhang Y, Xie L, Gong Y, Yuan J, Qiang B, Peng X (2007) Improving the prediction of human microRNA target genes by using ensemble algorithm. FEBS Lett 581:1587–1593PubMedCrossRefGoogle Scholar
  18. 18.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99:15524–15529PubMedCrossRefGoogle Scholar
  19. 19.
    Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801PubMedCrossRefGoogle Scholar
  20. 20.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedCrossRefGoogle Scholar
  22. 22.
    Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443PubMedCrossRefGoogle Scholar
  23. 23.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004PubMedCrossRefGoogle Scholar
  24. 24.
    Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022PubMedCrossRefGoogle Scholar
  25. 25.
    Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, Burger R, Gramatzki M, Blumert C, Bauer K, Cvijic H, Ullmann AK, Stadler PF, Horn F (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110:1330–1333PubMedCrossRefGoogle Scholar
  26. 26.
    Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, Li C, O’Brien-Jenkins A, Katsaros D, Weber BL, Simon C, Coukos G, Zhang L (2008) miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther 7(2):255–264PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yu Zhang
    • 1
    • 2
  • Tengfei Chao
    • 1
    • 2
  • Ran Li
    • 1
    • 2
  • Wei Liu
    • 1
    • 2
  • Yang Chen
    • 1
    • 2
  • Xingqi Yan
    • 1
    • 2
  • Yanhua Gong
    • 1
  • Bin Yin
    • 1
  • Wei Liu
    • 3
  • Boqing Qiang
    • 1
  • Jizhong Zhao
    • 3
  • Jiangang Yuan
    • 1
  • Xiaozhong Peng
    • 1
  1. 1.The National Laboratory of Medical Molecular Biology, Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  2. 2.Graduate School, Peking Union Medical CollegeTsinghua UniversityBeijingChina
  3. 3.The Department of NeurosurgeryBeijing Tiantan HospitalBeijingChina

Personalised recommendations