Molecular mechanisms underlying the onset of degenerative aortic valve disease

  • Daihiko Hakuno
  • Naritaka Kimura
  • Masatoyo Yoshioka
  • Keiichi Fukuda
Review

Abstract

Morbidity from degenerative aortic valve disease is increasing worldwide, concomitant with the ageing of the general population and the habitual consumption of diets high in calories and cholesterol. Immunohistologic studies have suggested that the molecular mechanism occurring in the degenerate aortic valve resembles that of atherosclerosis, prompting the testing of HMG CoA reductase inhibitors (statins) for the prevention of progression of native and bioprosthetic aortic valve degeneration. However, the effects of these therapies remain controversial. Although the molecular mechanisms underlying the onset of aortic valve degeneration are largely unknown, research in this area is advancing rapidly. The signaling components involved in embryonic valvulogenesis, such as Wnt, TGF-β1, BMP, and Notch, are also involved in the onset of aortic valve degeneration. Furthermore, investigations into extracellular matrix remodeling, angiogenesis, and osteogenesis in the aortic valve have been reported. Having noted avascularity of normal cardiac valves, we recently identified chondromodulin-I (chm-I) as a crucial anti-angiogenic factor. The expression of chm-I is restricted to cardiac valves from late embryogenesis to adulthood in the mouse, rat, and human. In human degenerate atherosclerotic valves, the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases and angiogenesis is observed in the area of chm-I downregulation. Gene targeting of chm-I resulted in VEGF expression, angiogenesis, and calcification in the aortic valves of aged mice, and aortic stenosis is detected by echocardiography, indicating that chm-I is a crucial factor for maintaining normal cardiac valvular function by preventing angiogenesis. The present review focuses on the animal models of aortic valve degeneration and recent studies on the molecular mechanisms underlying the onset of degenerative aortic valve disease.

Keywords

Angiogenesis Calcification Cardiovascular MMP VEGF 

References

  1. 1.
    Freeman RV, Otto CM (2005) Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111:3316–3326PubMedCrossRefGoogle Scholar
  2. 2.
    Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528PubMedGoogle Scholar
  3. 3.
    Rajamannan NM, Gersh B, Bonow RO (2003) Calcific aortic stenosis: from bench to the bedside—emerging clinical and cellular concepts. Heart 89:801–805PubMedCrossRefGoogle Scholar
  4. 4.
    Rajamannan NM, Otto CM (2004) Targeted therapy to prevent progression of calcific aortic stenosis. Circulation 110:1180–1182PubMedCrossRefGoogle Scholar
  5. 5.
    Osman L, Yacoub MH, Latif N, Amrani M, Chester AH (2006) Role of human valve interstitial cells in valve calcification and their response to atorvastatin. Circulation 114:I547–552PubMedCrossRefGoogle Scholar
  6. 6.
    Rajamannan NM, Bonow RO, Rahimtoola SH (2007) Calcific aortic stenosis: an update. Nat Clin Pract Cardiovasc Med 4:254–262PubMedCrossRefGoogle Scholar
  7. 7.
    Skowasch D, Steinmetz M, Nickenig G, Bauriedel G (2006) Is the degeneration of aortic valve bioprostheses similar to that of native aortic valves? Insights into valvular pathology. Expert Rev Med Devices 3:453–462PubMedCrossRefGoogle Scholar
  8. 8.
    Maganti K, Rajamannan N (2008) Slowing the progression of aortic stenosis. Curr Treat Options Cardiovasc Med 10:18–26PubMedCrossRefGoogle Scholar
  9. 9.
    Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528PubMedGoogle Scholar
  10. 10.
    Kim KM (1976) Calcification of matrix vesicles in human aortic valve and aortic media. Fed Proc 35:156–162PubMedGoogle Scholar
  11. 11.
    Kim KM, Chang SH, Trump BF, Spurgeon H (1986) Calcification in aging canine aortic valve. Scan Electron Microsc 3:1151–1156Google Scholar
  12. 12.
    Ortolani F, Bonett A, Tubaro F, Petrelli L, Contin M, Nori SL, Spina M, Marchini M (2007) Ultrastructural characterization of calcification onset and progression in subdermally implanted aortic valves. Histochemical and spectrometric data. Histol Histopathol 22:261–272PubMedGoogle Scholar
  13. 13.
    Rajamannan NM, Subramaniam M, Rickard D, Stock SR, Donovan J, Springett M, Orszulak T, Fullerton DA, Tajik AJ, Bonow RO, Spelsberg T (2003) Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184PubMedCrossRefGoogle Scholar
  14. 14.
    Lee YS, Chou YY (1998) Pathogenetic mechanism of senile calcific aortic stenosis: the role of apoptosis. Chin Med J (Engl) 111:934–939Google Scholar
  15. 15.
    Helske S, Kupari M, Lindstedt KA, Kovanen PT (2007) Aortic valve stenosis: an active atheroinflammatory process. Curr Opin Lipidol 18:483–491PubMedCrossRefGoogle Scholar
  16. 16.
    Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R (2007) Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115:377–386PubMedCrossRefGoogle Scholar
  17. 17.
    O'Brien KD (2006) Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler Thromb Vasc Biol 26:1721–1728PubMedCrossRefGoogle Scholar
  18. 18.
    Hinton RB Jr., Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW, Yutzey KE (2006) Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res 98:1431–1438PubMedCrossRefGoogle Scholar
  19. 19.
    Rosenhek R, Rader F, Loho N, Gabriel H, Heger M, Klaar U, Schemper M, Binder T, Maurer G, Baumgartner H (2004) Statins but not angiotensin-converting enzyme inhibitors delay progression of aortic stenosis. Circulation 110:1291–1295PubMedCrossRefGoogle Scholar
  20. 20.
    Rosenhek R (2005) Statins for aortic stenosis. N Engl J Med 352:2441–2443PubMedCrossRefGoogle Scholar
  21. 21.
    Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, Boon NA (2005) A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med 352:2389–2397PubMedCrossRefGoogle Scholar
  22. 22.
    Antonini-Canterin F, Zuppiroli A, Popescu BA, Granata G, Cervesato E, Piazza R, Pavan D, Nicolosi GL (2003) Effect of statins on the progression of bioprosthetic aortic valve degeneration. Am J Cardiol 92:1479–1482PubMedCrossRefGoogle Scholar
  23. 23.
    Colli A, Gherli T, Mestres CA, Pomar JL (2007) Degeneration of native and tissue prosthetic valve in aortic position: do statins play an effective role in prevention? Int J Cardiol 116:144–152PubMedCrossRefGoogle Scholar
  24. 24.
    Rajamannan NM, Sangiorgi G, Springett M, Arnold K, Mohacsi T, Spagnoli LG, Edwards WD, Tajik AJ, Schwartz RS (2001) Experimental hypercholesterolemia induces apoptosis in the aortic valve. J Heart Valve Dis 10:371–374PubMedGoogle Scholar
  25. 25.
    Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO, Spelsberg TC (2002) Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation 105:2660–2665PubMedCrossRefGoogle Scholar
  26. 26.
    Drolet MC, Arsenault M, Couet J (2003) Experimental aortic valve stenosis in rabbits. J Am Coll Cardiol 41:1211–1217PubMedCrossRefGoogle Scholar
  27. 27.
    Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC (2005) Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation 112:I229–234PubMedGoogle Scholar
  28. 28.
    Guerraty M, Mohler ER 3rd (2007) Models of aortic valve calcification. J Investig Med 55:278–283PubMedCrossRefGoogle Scholar
  29. 29.
    Tanaka K, Sata M, Fukuda D, Suematsu Y, Motomura N, Takamoto S, Hirata Y, Nagai R (2005) Age-associated aortic stenosis in apolipoprotein E-deficient mice. J Am Coll Cardiol 46:134–141PubMedCrossRefGoogle Scholar
  30. 30.
    Drolet MC, Roussel E, Deshaie Y, Couet J, Arsenault M (2006) A high fat/high carbohydrate diet induces aortic valve disease in C57BL/6J mice. J Am Coll Cardiol 47:850–855PubMedCrossRefGoogle Scholar
  31. 31.
    Jian B, Jones PL, Li Q, Mohler ER 3rd, Schoen FJ, Levy RJ (2001) Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Pathol 159:321–327PubMedGoogle Scholar
  32. 32.
    Mohler ER 3rd, Adam LP, McClelland P, Graham L, Hathaway DR (1997) Detection of osteopontin in calcified human aortic valves. Arterioscler Thromb Vasc Biol 17:547–552PubMedGoogle Scholar
  33. 33.
    Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, Giachelli CM (2002) Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification. Am J Pathol 161:2035–2046PubMedGoogle Scholar
  34. 34.
    Ghazvini-Boroujerdi M, Clark J, Narula N, Palmatory E, Connolly JM, DeFelice S, Xu J, Jian B, Hazelwood S, Levy RJ (2004) Transcription factor Egr-1 in calcific aortic valve disease. J Heart Valve Dis 13:894–903PubMedGoogle Scholar
  35. 35.
    Fondard O, Detaint D, Iung B, Choqueux C, Adle-Biassette H, Jarraya M, Hvass U, Couetil JP, Henin D, Michel JB, Vahanian A, Jacob MP (2005) Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J 26:1333–1341PubMedCrossRefGoogle Scholar
  36. 36.
    Kaden JJ, Dempfle CE, Grobholz R, Fischer CS, Vocke DC, Kilic R, Sarikoc A, Pinol R, Hagl S, Lang S, Brueckmann M, Borggrefe M (2005) Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc Pathol 14:80–87PubMedCrossRefGoogle Scholar
  37. 37.
    Hanada K, Vermeij M, Garinis GA, de Waard MC, Kunen MG, Myers L, Maas A, Duncker DJ, Meijers C, Dietz HC, Kanaar R, Essers J (2007) Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circ Res 100:738–746PubMedCrossRefGoogle Scholar
  38. 38.
    Kyndt F, Gueffet JP, Probst V, Jaafar P, Legendre A, Le Bouffant F, Toquet C, Roy E, McGregor L, Lynch SA, Newbury-Ecob R, Tran V, Young I, Trochu JN, Le Marec H, Schott JJ (2007) Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation 115:40–49PubMedCrossRefGoogle Scholar
  39. 39.
    Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM (2006) Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 47:1707–1712PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson ML, Rajamannan N (2006) Diseases of Wnt signaling. Rev Endocr Metab Disord 7:41–49PubMedCrossRefGoogle Scholar
  41. 41.
    Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA (2004) Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res 95:253–260PubMedCrossRefGoogle Scholar
  42. 42.
    Mohler ER 3rd, Chawla MK, Chang AW, Vyavahare N, Levy RJ, Graham L, Gannon FH (1999) Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis 8:254–260PubMedGoogle Scholar
  43. 43.
    Clark-Greuel JN, Connolly JM, Sorichillo E, Narula NR, Rapoport HS, Mohler ER 3rd, Gorman JH 3rd, Gorman RC, Levy RJ (2007) Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann Thorac Surg 83:946–953PubMedCrossRefGoogle Scholar
  44. 44.
    Kaden JJ, Bickelhaupt S, Grobholz R, Vahl CF, Hagl S, Brueckmann M, Haase KK, Dempfle CE, Borggrefe M (2004) Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis 13:560–566PubMedGoogle Scholar
  45. 45.
    Choi M, Stottmann RW, Yang YP, Meyers EN, Klingensmith J (2007) The bone morphogenetic protein antagonist noggin regulates mammalian cardiac morphogenesis. Circ Res 100:220–228PubMedCrossRefGoogle Scholar
  46. 46.
    Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH, Gimbrone MA Jr., Falb D, Huszar D (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24:171–174PubMedCrossRefGoogle Scholar
  47. 47.
    Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18:99–115PubMedCrossRefGoogle Scholar
  48. 48.
    Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274PubMedCrossRefGoogle Scholar
  49. 49.
    Garg V (2006) Molecular genetics of aortic valve disease. Curr Opin Cardiol 21:180–184PubMedCrossRefGoogle Scholar
  50. 50.
    Mohamed SA, Aherrahrou Z, Liptau H, Erasmi AW, Hagemann C, Wrobel S, Borzym K, Schunkert H, Sievers HH, Erdmann J (2006) Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun 345:1460–1465PubMedCrossRefGoogle Scholar
  51. 51.
    Lange AW, Yutzey KE (2006) NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev Biol 292:407–417PubMedCrossRefGoogle Scholar
  52. 52.
    Kaden JJ, Bickelhaupt S, Grobholz R, Haase KK, Sarikoc A, Kilic R, Brueckmann M, Lang S, Zahn I, Vahl C, Hagl S, Dempfle CE, Borggrefe M (2004) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J Mol Cell Cardiol 36:57–66PubMedCrossRefGoogle Scholar
  53. 53.
    Kaden JJ, Dempfle CE, Kilic R, Sarikoc A, Hagl S, Lang S, Brueckmann M, Borggrefe M (2005) Influence of receptor activator of nuclear factor kappa B on human aortic valve myofibroblasts. Exp Mol Pathol 78:36–40PubMedCrossRefGoogle Scholar
  54. 54.
    Osman L, Chester AH, Sarathchandra P, Latif N, Meng W, Taylor PM, Yacoub MH (2007) A novel role of the sympatho-adrenergic system in regulating valve calcification. Circulation 116:I282–287PubMedCrossRefGoogle Scholar
  55. 55.
    Golubnitschaja O, Yeghiazaryan K, Skowasch D, Schild H, Bauriedel G (2006) p21WAF1/CIP1 and 14-3-3 sigma gene expression in degenerated aortic valves: a link between cell cycle checkpoints and calcification. Amino Acids 31:309–316PubMedCrossRefGoogle Scholar
  56. 56.
    Yeghiazaryan K, Skowasch D, Bauriedel G, Schild H, Golubnitschaja O (2007) Could activated tissue remodeling be considered as early marker for progressive valve degeneration? Comparative analysis of checkpoint and ECM remodeling gene expression in native degenerating aortic valves and after bioprosthetic replacement. Amino Acids 32:109–114PubMedCrossRefGoogle Scholar
  57. 57.
    Zanettini R, Antonini A, Gatto G, Gentile R, Tesei S, Pezzoli G (2007) Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 356:39–46PubMedCrossRefGoogle Scholar
  58. 58.
    Schade R, Andersohn F, Suissa S, Haverkamp W, Garbe E (2007) Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 356:29–38PubMedCrossRefGoogle Scholar
  59. 59.
    Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA, Sun JH, Link JR, Abbaszade I, Hollis JM, Largent BL, Hartig PR, Hollis GF, Meunier PC, Robichaud AJ, Robertson DW (2000) Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 57:75–81PubMedGoogle Scholar
  60. 60.
    Roth BL (2007) Drugs and valvular heart disease. N Engl J Med 356:6–9PubMedCrossRefGoogle Scholar
  61. 61.
    Shukunami C, Oshima Y, Hiraki Y (2005) Chondromodulin-I and tenomodulin: a new class of tissue-specific angiogenesis inhibitors found in hypovascular connective tissues. Biochem Biophys Res Commun 333:299–307PubMedCrossRefGoogle Scholar
  62. 62.
    Rajamannan NM, Nealis TB, Subramaniam M, Pandya S, Stock SR, Ignatiev CI, Sebo TJ, Rosengart TK, Edwards WD, McCarthy PM, Bonow RO, Spelsberg TC (2005) Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation. Circulation 111:3296–3301PubMedCrossRefGoogle Scholar
  63. 63.
    Chalajour F, Treede H, Gehling UM, Ebrahimnejad A, Boehm DH, Riemer RK, Ergun S, Reichenspurner H (2007) Identification and characterization of cells with high angiogenic potential and transitional phenotype in calcific aortic valve. Exp Cell Res 313:2326–2335PubMedCrossRefGoogle Scholar
  64. 64.
    Chalajour F, Treede H, Ebrahimnejad A, Lauke H, Reichenspurner H, Ergun S (2004) Angiogenic activation of valvular endothelial cells in aortic valve stenosis. Exp Cell Res 298:455–464PubMedCrossRefGoogle Scholar
  65. 65.
    Skowasch D, Schrempf S, Wernert N, Steinmetz M, Jabs A, Tuleta I, Welsch U, Preusse CJ, Likungu JA, Welz A, Lüderitz B, Bauriedel G (2005) Cells of primarily extra-valvular origin in degenerative aortic valves and bioprostheses. Eur Heart J 26:2576–2580PubMedCrossRefGoogle Scholar
  66. 66.
    Yoshioka M, Yuasa S, Matsumura K, Kimura K, Shiomi T, Kimura N, Shukunami C, Okada Y, Mukai M, Shin H, Yozu R, Sata M, Ogawa S, Hiraki Y, Fukuda K (2006) Chondromodulin-I maintains cardiac valvular function by preventing angiogenesis. Nat Med 12:1151–1159PubMedCrossRefGoogle Scholar
  67. 67.
    Hiraki Y (1991) [Molecular cloning of a novel cartilage-specific functional matrix, chondromodulin-I, and its role in endochondral bone formation]. Seikagaku 63:1449–1454PubMedGoogle Scholar
  68. 68.
    Hiraki Y, Shukunami C (2005) Angiogenesis inhibitors localized in hypovascular mesenchymal tissues: chondromodulin-I and tenomodulin. Connect Tissue Res 46:3–11PubMedCrossRefGoogle Scholar
  69. 69.
    Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–1107PubMedCrossRefGoogle Scholar
  70. 70.
    Zijlstra A, Aimes RT, Zhu D, Regazzoni K, Kupriyanova T, Seandel M, Deryugina EI, Quigley JP (2004) Collagenolysis-dependent angiogenesis mediated by matrix metalloproteinase-13 (collagenase-3). J Biol Chem 279:27633–27645PubMedCrossRefGoogle Scholar
  71. 71.
    Lester W, Rosenthal A, Granton B, Gotlieb AI (1988) Porcine mitral valve interstitial cells in culture. Lab Invest 59:710–719PubMedGoogle Scholar
  72. 72.
    Oshima Y, Shukunami C, Honda J, Nishida K, Tashiro F, Miyazaki J, Hiraki Y, Tano Y (2003) Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes. Invest Ophthalmol Vis Sci 44:1814–1823PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Daihiko Hakuno
    • 1
    • 2
  • Naritaka Kimura
    • 1
    • 3
  • Masatoyo Yoshioka
    • 1
  • Keiichi Fukuda
    • 1
  1. 1.Department of Regenerative Medicine and Advanced Cardiac TherapeuticsKeio University School of MedicineShinjuku-kuJapan
  2. 2.Cardiovascular Division, Department of Internal MedicineKeio University School of MedicineTokyoJapan
  3. 3.Department of Cardiovascular SurgeryKeio University School of MedicineTokyoJapan

Personalised recommendations