Journal of Molecular Medicine

, Volume 86, Issue 11, pp 1205–1219 | Cite as

Targeted gene insertion for molecular medicine

  • Katrin Voigt
  • Zsuzsanna Izsvák
  • Zoltán IvicsEmail author


Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.


DNA-binding Zinc finger Transposon Virus Non-viral vectors Recombinase 



Work in the authors’ laboratory is supported by EU FP6 grant INTHER LSHB-CT-2005018961, and a grant from the Deutsche Forschungsgemeinschaft SPP1230 “Mechanisms of gene vector entry and persistence”.


  1. 1.
    Follenzi A, Santambrogio L, Annoni A (2007) Immune responses to lentiviral vectors. Curr Gene Ther 7:306–315CrossRefPubMedGoogle Scholar
  2. 2.
    Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751CrossRefPubMedGoogle Scholar
  3. 3.
    Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529CrossRefPubMedGoogle Scholar
  4. 4.
    Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234CrossRefPubMedGoogle Scholar
  5. 5.
    Baum C, von Kalle C, Staal FJ, Li Z, Fehse B, Schmidt M, Weerkamp F, Karlsson S, Wagemaker G, Williams DA (2004) Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 9:5–13CrossRefPubMedGoogle Scholar
  6. 6.
    Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193CrossRefPubMedGoogle Scholar
  7. 7.
    Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419CrossRefPubMedGoogle Scholar
  8. 8.
    Baum C (2007) What are the consequences of the fourth case? Mol Ther 15:1401–1402CrossRefPubMedGoogle Scholar
  9. 9.
    Thrasher AJ, Gaspar HB (2007) Severe adverse event in clinical trial of gene therapy for X-SCID. ASGT press releaseGoogle Scholar
  10. 10.
    Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, Morecki S, Andolfi G, Tabucchi A, Carlucci F et al (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–2413CrossRefPubMedGoogle Scholar
  11. 11.
    Volpers C, Kochanek S (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med 6(Suppl 1):S164–S171CrossRefPubMedGoogle Scholar
  12. 12.
    Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158CrossRefPubMedGoogle Scholar
  13. 13.
    Christ M, Lusky M, Stoeckel F, Dreyer D, Dieterle A, Michou AI, Pavirani A, Mehtali M (1997) Gene therapy with recombinant adenovirus vectors: evaluation of the host immune response. Immunol Lett 57:19–25CrossRefPubMedGoogle Scholar
  14. 14.
    Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM (1995) Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 92:1401–1405CrossRefPubMedGoogle Scholar
  15. 15.
    Muruve DA, Cotter MJ, Zaiss AK, White LR, Liu Q, Chan T, Clark SA, Ross PJ, Meulenbroek RA, Maelandsmo GM et al (2004) Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol 78:5966–5972CrossRefPubMedGoogle Scholar
  16. 16.
    Ehrhardt A, Xu H, Kay MA (2003) Episomal persistence of recombinant adenoviral vector genomes during the cell cycle in vivo. J Virol 77:7689–7695CrossRefPubMedGoogle Scholar
  17. 17.
    McCarty DM, Young SM Jr, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845CrossRefPubMedGoogle Scholar
  18. 18.
    Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA (2003) AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 34:297–302CrossRefPubMedGoogle Scholar
  19. 19.
    Li S, Ma Z (2001) Nonviral gene therapy. Curr Gene Ther 1:201–126CrossRefPubMedGoogle Scholar
  20. 20.
    Goncz KK, Prokopishyn NL, Chow BL, Davis BR, Gruenert DC (2002) Application of SFHR to gene therapy of monogenic disorders. Gene Ther 9:691–694CrossRefPubMedGoogle Scholar
  21. 21.
    Russell DW, Hirata RK (1998) Human gene targeting by viral vectors. Nat Genet 18:325–330CrossRefPubMedGoogle Scholar
  22. 22.
    Wu H, Ceccarelli DF, Frappier L (2000) The DNA segregation mechanism of Epstein–Barr virus nuclear antigen 1. EMBO Rep 1:140–144CrossRefPubMedGoogle Scholar
  23. 23.
    Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 27:426–428CrossRefPubMedGoogle Scholar
  24. 24.
    Kaul R, Murakami M, Choudhuri T, Robertson ES (2007) Epstein–Barr virus latent nuclear antigens can induce metastasis in a nude mouse model. J Virol 81:10352–10361CrossRefPubMedGoogle Scholar
  25. 25.
    Hammerschmidt W, Sugden B (2004) Epstein–Barr virus sustains Burkitt’s lymphomas and Hodgkin’s disease. Trends Mol Med 10:331–336CrossRefPubMedGoogle Scholar
  26. 26.
    Hadlaczky G (2001) Satellite DNA-based artificial chromosomes for use in gene therapy. Curr Opin Mol Ther 3:125–132PubMedGoogle Scholar
  27. 27.
    Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510CrossRefPubMedGoogle Scholar
  28. 28.
    Miskey C, Izsvak Z, Plasterk RH, Ivics Z (2003) The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res 31:6873–6881CrossRefPubMedGoogle Scholar
  29. 29.
    Ivics Z, Izsvak Z (2006) Transposons for gene therapy! Curr Gene Ther 6:593–607CrossRefPubMedGoogle Scholar
  30. 30.
    Yant SR, Ehrhardt A, Mikkelsen JG, Meuse L, Pham T, Kay MA (2002) Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 20:999–1005CrossRefPubMedGoogle Scholar
  31. 31.
    Bowers WJ, Mastrangelo MA, Howard DF, Southerland HA, Maguire-Zeiss KA, Federoff HJ (2006) Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector. Mol Ther 13:580–588CrossRefPubMedGoogle Scholar
  32. 32.
    Mates L, Izsvak Z, Ivics Z (2007) Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 8(Suppl 1):S1CrossRefPubMedGoogle Scholar
  33. 33.
    Vigdal TJ, Kaufman CD, Izsvák Z, Voytas DF, Ivics Z (2002) Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/mariner transposable elements. J Mol Biol 323:441–452CrossRefPubMedGoogle Scholar
  34. 34.
    Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA, Takeda J, Horie K, Olson WK, Hackett PB (2005) Target-site preferences of Sleeping Beauty transposons. J Mol Biol 346:161–173CrossRefPubMedGoogle Scholar
  35. 35.
    Yant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 25:2085–2094CrossRefPubMedGoogle Scholar
  36. 36.
    Walisko O, Schorn A, Rolfs F, Devaraj A, Miskey C, Izsvak Z, Ivics Z (2008) Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol Ther 16:359–369CrossRefPubMedGoogle Scholar
  37. 37.
    Dupuy AJ, Jenkins NA, Copeland NG (2006) Sleeping beauty: a novel cancer gene discovery tool. Hum Mol Genet 15(Spec No 1):R75–R79CrossRefPubMedGoogle Scholar
  38. 38.
    Carlson CM, Frandsen JL, Kirchhof N, McIvor RS, Largaespada DA (2005) Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. Proc Natl Acad Sci USA 102:17059–17064CrossRefPubMedGoogle Scholar
  39. 39.
    Wilson MH, Coates CJ, George AL Jr (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145CrossRefPubMedGoogle Scholar
  40. 40.
    Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483CrossRefPubMedGoogle Scholar
  41. 41.
    Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature 383:330CrossRefGoogle Scholar
  42. 42.
    Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7CrossRefPubMedGoogle Scholar
  43. 43.
    Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor RS et al (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2:e169CrossRefPubMedGoogle Scholar
  44. 44.
    Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S et al (2006) Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2:e60CrossRefPubMedGoogle Scholar
  45. 45.
    Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287–1289CrossRefPubMedGoogle Scholar
  46. 46.
    Ge H, Si Y, Roeder RG (1998) Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17:6723–6729CrossRefPubMedGoogle Scholar
  47. 47.
    Llano M, Vanegas M, Fregoso O, Saenz D, Chung S, Peretz M, Poeschla EM (2004) LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 78:9524–9537CrossRefPubMedGoogle Scholar
  48. 48.
    Barr SD, Leipzig J, Shinn P, Ecker JR, Bushman FD (2005) Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J Virol 79:12035–12044CrossRefPubMedGoogle Scholar
  49. 49.
    Linden RM, Winocour E, Berns KI (1996) The recombination signals for adeno-associated virus site-specific integration. Proc Natl Acad Sci USA 93:7966–7972CrossRefPubMedGoogle Scholar
  50. 50.
    Weitzman MD, Kyostio SR, Kotin RM, Owens RA (1994) Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci USA 91:5808–5812CrossRefPubMedGoogle Scholar
  51. 51.
    Urcelay E, Ward P, Wiener SM, Safer B, Kotin RM (1995) Asymmetric replication in vitro from a human sequence element is dependent on adeno-associated virus Rep protein. J Virol 69:2038–2046PubMedGoogle Scholar
  52. 52.
    Cortes ML, Oehmig A, Saydam O, Sanford JD, Perry KF, Fraefel C, Breakefield XO (2008) Targeted integration of functional human ATM cDNA into genome mediated by HSV/AAV hybrid amplicon vector. Mol Ther 16:81–88CrossRefPubMedGoogle Scholar
  53. 53.
    Recchia A, Perani L, Sartori D, Olgiati C, Mavilio F (2004) Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol Ther 10:660–670CrossRefPubMedGoogle Scholar
  54. 54.
    Young SM Jr, Samulski RJ (2001) Adeno-associated virus (AAV) site-specific recombination does not require a Rep-dependent origin of replication within the AAV terminal repeat. Proc Natl Acad Sci USA 98:13525–13530CrossRefPubMedGoogle Scholar
  55. 55.
    Yu Y, Bradley A (2001) Engineering chromosomal rearrangements in mice. Nat Rev Genet 2:780–790CrossRefPubMedGoogle Scholar
  56. 56.
    Sauer B, Henderson N (1990) Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol 2:441–449PubMedGoogle Scholar
  57. 57.
    Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54CrossRefPubMedGoogle Scholar
  58. 58.
    Sarkar I, Hauber I, Hauber J, Buchholz F (2007) HIV-1 proviral DNA excision using an evolved recombinase. Science 316:1912–1915CrossRefPubMedGoogle Scholar
  59. 59.
    Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662CrossRefPubMedGoogle Scholar
  60. 60.
    Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, Berns A, Jonkers J (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci USA 98:9209–9214CrossRefPubMedGoogle Scholar
  61. 61.
    Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA 95:5505–5510CrossRefPubMedGoogle Scholar
  62. 62.
    Chalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, Hillman RT, Hoelters J, Calos MP (2006) Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol 357:28–48CrossRefPubMedGoogle Scholar
  63. 63.
    Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 21:3926–3934CrossRefPubMedGoogle Scholar
  64. 64.
    Ginsburg DS, Calos MP (2005) Site-specific integration with phiC31 integrase for prolonged expression of therapeutic genes. Adv Genet 54:179–187CrossRefPubMedGoogle Scholar
  65. 65.
    Glover DJ, Lipps HJ, Jans DA (2005) Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 6:299–310CrossRefPubMedGoogle Scholar
  66. 66.
    Liu J, Jeppesen I, Nielsen K, Jensen TG (2006) Phi c31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther 13:1188–1190CrossRefPubMedGoogle Scholar
  67. 67.
    Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 17:1077–1094CrossRefPubMedGoogle Scholar
  68. 68.
    Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478PubMedGoogle Scholar
  69. 69.
    Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfinkel DJ, Curcio MJ (1997) Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev 11:255–269CrossRefPubMedGoogle Scholar
  70. 70.
    Bachman N, Gelbart ME, Tsukiyama T, Boeke JD (2005) TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs. Genes Dev 19:955–964CrossRefPubMedGoogle Scholar
  71. 71.
    Kirchner J, Connolly CM, Sandmeyer SB (1995) Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267:1488–1491CrossRefPubMedGoogle Scholar
  72. 72.
    Yieh L, Hatzis H, Kassavetis G, Sandmeyer SB (2002) Mutational analysis of the transcription factor IIIB-DNA target of Ty3 retroelement integration. J Biol Chem 277:25920–25928CrossRefPubMedGoogle Scholar
  73. 73.
    Aye M, Dildine SL, Claypool JA, Jourdain S, Sandmeyer SB (2001) A truncation mutant of the 95-kilodalton subunit of transcription factor IIIC reveals asymmetry in Ty3 integration. Mol Cell Biol 21:7839–7851CrossRefPubMedGoogle Scholar
  74. 74.
    Xie W, Gai X, Zhu Y, Zappulla DC, Sternglanz R, Voytas DF (2001) Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol Cell Biol 21:6606–6614CrossRefPubMedGoogle Scholar
  75. 75.
    Zou S, Ke N, Kim JM, Voytas DF (1996) The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev 10:634–645CrossRefPubMedGoogle Scholar
  76. 76.
    Peters JE, Craig NL (2001) Tn7: smarter than we thought. Nat Rev Mol Cell Biol 2:806–814CrossRefPubMedGoogle Scholar
  77. 77.
    Kuduvalli PN, Mitra R, Craig NL (2005) Site-specific Tn7 transposition into the human genome. Nucleic Acids Res 33:857–863CrossRefPubMedGoogle Scholar
  78. 78.
    Loomis WF, Welker D, Hughes J, Maghakian D, Kuspa A (1995) Integrated maps of the chromosomes in Dictyostelium discoideum. Genetics 141:147–157PubMedGoogle Scholar
  79. 79.
    Winckler T, Dingermann T, Glockner G (2002) Dictyostelium mobile elements: strategies to amplify in a compact genome. Cell Mol Life Sci 59:2097–2111CrossRefPubMedGoogle Scholar
  80. 80.
    Winckler T, Szafranski K, Glockner G (2005) Transfer RNA gene-targeted integration: an adaptation of retrotransposable elements to survive in the compact Dictyostelium discoideum genome. Cytogenet Genome Res 110:288–298CrossRefPubMedGoogle Scholar
  81. 81.
    Chung T, Siol O, Dingermann T, Winckler T (2007) Protein interactions involved in tRNA gene-specific integration of Dictyostelium non-long terminal repeat retrotransposon TRE5-A. Mol Cell Biol 27:8492–8501CrossRefPubMedGoogle Scholar
  82. 82.
    Collins CH, Yokobayashi Y, Umeno D, Arnold FH (2003) Engineering proteins that bind, move, make and break DNA. Curr Opin Biotechnol 14:665CrossRefPubMedGoogle Scholar
  83. 83.
    Katz RA, Merkel G, Skalka AM (1996) Targeting of retroviral integrase by fusion to a heterologous DNA binding domain: in vitro activities and incorporation of a fusion protein into viral particles. Virology 217:178–190CrossRefPubMedGoogle Scholar
  84. 84.
    Bushman FD (1994) Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc Natl Acad Sci USA 91:9233–9237CrossRefPubMedGoogle Scholar
  85. 85.
    Goulaouic H, Chow SA (1996) Directed integration of viral DNA mediated by fusion proteins consisting of human immunodeficiency virus type 1 integrase and Escherichia coli LexA protein. J Virol 70:37–46PubMedGoogle Scholar
  86. 86.
    Szabo M, Muller F, Kiss J, Balduf C, Strahle U, Olasz F (2003) Transposition and targeting of the prokaryotic mobile element IS30 in zebrafish. FEBS Lett 550:46–50CrossRefPubMedGoogle Scholar
  87. 87.
    Maragathavally KJ, Kaminski JM, Coates CJ (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20:1880–1882CrossRefPubMedGoogle Scholar
  88. 88.
    Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103:15008–15013CrossRefPubMedGoogle Scholar
  89. 89.
    Yant SR, Huang Y, Akache B, Kay MA (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35:e50CrossRefPubMedGoogle Scholar
  90. 90.
    Akopian A, He J, Boocock MR, Stark WM (2003) Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci USA 100:8688–8691CrossRefPubMedGoogle Scholar
  91. 91.
    Bushman FD, Miller MD (1997) Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J Virol 71:458–464PubMedGoogle Scholar
  92. 92.
    Mandell JG, Barbas CF 3rd (2006) Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34:W516–W523CrossRefPubMedGoogle Scholar
  93. 93.
    Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793CrossRefPubMedGoogle Scholar
  94. 94.
    Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306CrossRefPubMedGoogle Scholar
  95. 95.
    Beerli RR, Segal DJ, Dreier B, Barbas CF 3rd (1998) Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 95:14628–14633CrossRefPubMedGoogle Scholar
  96. 96.
    Tan W, Zhu K, Segal DJ, Barbas CF 3rd, Chow SA (2004) Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J Virol 78:1301–1313CrossRefPubMedGoogle Scholar
  97. 97.
    Tan W, Dong Z, Wilkinson TA, Barbas CF 3rd, Chow SA (2006) Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J Virol 80:1939–1948CrossRefPubMedGoogle Scholar
  98. 98.
    Wilson MH, Kaminski JM, George AL Jr (2005) Functional zinc finger/sleeping beauty transposase chimeras exhibit attenuated overproduction inhibition. FEBS Lett 579:6205–6209CrossRefPubMedGoogle Scholar
  99. 99.
    Corbi N, Libri V, Fanciulli M, Tinsley JM, Davies KE, Passananti C (2000) The artificial zinc finger coding gene ‘Jazz’ binds the utrophin promoter and activates transcription. Gene Ther 7:1076–1083CrossRefPubMedGoogle Scholar
  100. 100.
    Ivics Z, Katzer A, Stuwe EE, Fiedler D, Knespel S, Izsvak Z (2007) Targeted Sleeping Beauty transposition in human cells. Mol Ther 15:1137–1144PubMedGoogle Scholar
  101. 101.
    Ciuffi A, Diamond TL, Hwang Y, Marshall HM, Bushman FD (2006) Modulating target site selection during human immunodeficiency Virus DNA integration in vitro with an engineered tethering factor. Hum Gene Ther 17:960–967CrossRefPubMedGoogle Scholar
  102. 102.
    Zhu Y, Dai J, Fuerst PG, Voytas DF (2003) Controlling integration specificity of a yeast retrotransposon. Proc Natl Acad Sci USA 100:5891–5895CrossRefPubMedGoogle Scholar
  103. 103.
    Kipp M, Gohring F, Ostendorp T, van Drunen CM, van Driel R, Przybylski M, Fackelmayer FO (2000) SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol 20:7480–7489CrossRefPubMedGoogle Scholar
  104. 104.
    Izsvák Z, Khare D, Behlke J, Heinemann U, Plasterk RH, Ivics Z (2002) Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition. J Biol Chem 277:34581–34588CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Katrin Voigt
    • 1
  • Zsuzsanna Izsvák
    • 1
    • 2
  • Zoltán Ivics
    • 1
    Email author
  1. 1.Max Delbrück Center for Molecular MedicineBerlinGermany
  2. 2.Institute of BiochemistryBiological Research Center of the Hungarian Academy of SciencesSzegedHungary

Personalised recommendations