Advertisement

Protein kinase CK2, an important regulator of the inflammatory response?

  • Nishi N. Singh
  • Dipak P. RamjiEmail author
Review

Abstract

Casein kinase 2 (CK2) is a highly conserved serine–threonine kinase that uses both adenosine triphosphate and guanosine triphosphate as phosphate donors. This constitutively active and ubiquitously expressed enzyme is often present as a tetrameric holoenzyme complex of two catalytic subunits (α and/or α’) and two regulatory β subunits. The enzyme is known to phosphorylate more than 300 substrates and controls a wide range of processes, including the regulation of cell cycle, apoptosis, transformation, and circadian rhythm. Several lines of recent evidence also suggest a potentially important role for CK2 in the control of the inflammatory response. This review will give an overview of CK2 and its regulation and describe the evidence implicating its role in inflammation.

Keywords

Atherosclerosis Casein kinase 2 Cellular signaling Cancer Glomerulonephritis Inflammation Phosphorylation Transcription factors 

Notes

Acknowledgements

We thank the British Heart Foundation and the Wellcome Trust for financial support and apologize to all those authors whose work could not be cited because of space limitations.

References

  1. 1.
    Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15PubMedCrossRefGoogle Scholar
  2. 2.
    Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368PubMedCrossRefGoogle Scholar
  3. 3.
    Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res 301:329–340PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson LK, Dhillon N, Thorner J, Martin GS (1997) Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. J Biol Chem 272:12961–12967PubMedCrossRefGoogle Scholar
  5. 5.
    Buchou T, Vernet M, Blond O, Jensen HH, Pointu H, Olsen BB, Cochet C, Issinger OG, Boldyreff B (2003) Disruption of the regulatory beta subunit of protein kinase CK2 in mice leads to a cell-autonomous defect and early embryonic lethality. Mol Cell Biol 23:908–915PubMedCrossRefGoogle Scholar
  6. 6.
    Xu X, Toselli PA, Russell LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II alpha’ catalytic subunit. Nat Genet 23:118–121PubMedCrossRefGoogle Scholar
  7. 7.
    Lou DY, Dominguez I, Toselli P, Landesman-Bollag E, O’Brien C, Seldin DC (2008) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol 28:131–139PubMedCrossRefGoogle Scholar
  8. 8.
    Canton DA, Lichfield DW (2006) The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal 18:267–275PubMedCrossRefGoogle Scholar
  9. 9.
    Duncan JS, Litchfield DW (2008) Too much of a good thing the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47PubMedGoogle Scholar
  10. 10.
    Shi X, Potvin B, Huang T, Hilgard P, Spray DC, Suadicani SO, Wolkoff AW, Stanley P, Stockert RJ (2001) A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. J Biol Chem 276:2075–2082PubMedCrossRefGoogle Scholar
  11. 11.
    Graham KC, Litchfield DW (2000) The regulatory beta subunit of protein kinase CK2 mediates formation of tetrameric CK2 complexes. J Biol Chem 275:5003–5010PubMedCrossRefGoogle Scholar
  12. 12.
    Filhol O, Martiel JL, Cochet C (2004) Protein kinase CK2: a new view of an old molecular complex. EMBO Rep 5:351–355PubMedCrossRefGoogle Scholar
  13. 13.
    Li X, Guan B, Maghami S, Bieberich CJ (2006) NKX3.1 is regulated by protein kinase CK2 in prostate tumor cells. Mol Cell Biol 26:3008–3017PubMedCrossRefGoogle Scholar
  14. 14.
    Niefind K, Guerra B, Ermakowa I, Issinger OG (2001) Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J 20:5320–5331PubMedCrossRefGoogle Scholar
  15. 15.
    Bolanos-Garcia VM, Fernandez-Recio J, Allende JE, Blundell TL (2006) Identifying interaction motifs in CK2beta-a ubiquitous kinase regulatory subunit. Trends Biochem Sci 31:654–661PubMedCrossRefGoogle Scholar
  16. 16.
    Chantalat L, Leroy D, Filhol O, Nueda A, Benitez MJ, Chambaz EM, Cochet C, Dideberg O (1999) Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc-mediated dimerization. EMBO J 18:2930–2940PubMedCrossRefGoogle Scholar
  17. 17.
    Orlandini M, Semplici F, Ferruzzi R, Meggio F, Pinna LA, Oliviero S (1998) Protein kinase CK2α’ is induced by serum as a delayed early gene and cooperates with Ha–Ras in fibroblast transformation. J Biol Chem 273:21291–21297PubMedCrossRefGoogle Scholar
  18. 18.
    Ackerman P, Glover CV, Osheroff N (1990) Stimulation of casein kinase II by epidermal growth factor: relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit. Proc Natl Acad Sci U S A 87:821–825PubMedCrossRefGoogle Scholar
  19. 19.
    Bosc DG, Slominski E, Sichler C, Litchfield DW (1995) Phosphorylation of casein kinase II by p34cdc2. Identification of phosphorylation sites using phosphorylation site mutants in vitro. J Biol Chem 270:25872–25878PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang C, Vilk G, Canton DA, Litchfield DW (2002) Phosphorylation regulates the stability of the regulatory CK2β subunit. Oncogene 21:3754–3764PubMedCrossRefGoogle Scholar
  21. 21.
    Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G (1996) Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 271:24781–24787PubMedCrossRefGoogle Scholar
  22. 22.
    Skjerpen CS, Nilsen T, Wesche J, Olsnes S (2002) Binding of FGF-1 variants to protein kinase CK2 correlates with mitogenicity. EMBO J 21:4058–4069PubMedCrossRefGoogle Scholar
  23. 23.
    Ahmed K, Gerber DA, Cochet C (2002) Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol 12:226–230PubMedCrossRefGoogle Scholar
  24. 24.
    Guo C, Yu S, Davis AT, Ahmed K (1999) Nuclear matrix targeting of the protein kinase CK2 signal as a common downstream response to androgen or growth factor stimulation of prostate cancer cells. Cancer Res 59:1146–1151PubMedGoogle Scholar
  25. 25.
    Olsten ME, Canton DA, Zhang C, Walton PA, Litchfield DW (2004) The pleckstrin homology domain of CK2 interacting protein-1 is required for interactions and recruitment of protein kinase CK2 to the plasma membrane. J Biol Chem 279:42114–42127PubMedCrossRefGoogle Scholar
  26. 26.
    Martel V, Filhol O, Nueda A, Gerber D, Benitez MJ, Cochet C (2001) Visualization and molecular analysis of nuclear import of protein kinase CK2 in living cells. Mol Cell Biochem 227:81–90PubMedCrossRefGoogle Scholar
  27. 27.
    Carroll D, Marshak DR (1989) Serum-stimulated cell growth causes oscillations in casein kinase II activity. J Biol Chem 264:7345–7348PubMedGoogle Scholar
  28. 28.
    Lodie TA, Savendra R Jr, Golenbock DT, Van Beveren CP, Maki RA, Fenton MJ (1997) Stimulation of macrophages by lipopolysaccharide alters the phosphorylation state, conformation, and function of PU.1 via activation of casein kinase II. J Immunol 158:1848–1856PubMedGoogle Scholar
  29. 29.
    Van Lint J, Agostinis P, Vandevoorde V, Haegeman G, Fiers W, Merlevede W, Vandenheede JR (1992) Tumor necrosis factor stimulates serine/threonine protein kinases in Swiss 3T3 and L929 cells. Implications of casein kinase-2 and extracellular signal-regulated kinases in the tumor necrosis factor signal transduction pathway. J Biol Chem 267:25916–25921PubMedGoogle Scholar
  30. 30.
    Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL (2000) Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase. J Biol Chem 275:16569–16573PubMedCrossRefGoogle Scholar
  31. 31.
    Parhar K, Morse J, Salh B (2007) The role of protein kinase CK2 in intestinal epithelial cell inflammatory signaling. Int J Colorectal Dis 22:601–609PubMedCrossRefGoogle Scholar
  32. 32.
    Zdunek M, Silbiger S, Lei J, Neugarten J (2001) Protein kinase CK2 mediates TGF-beta1-stimulated type IV collagen gene transcription and its reversal by estradiol. Kidney Int 60:2097–2108PubMedCrossRefGoogle Scholar
  33. 33.
    Singh NN, Ramji DP (2006) Transforming growth factor-beta-induced expression of the apolipoprotein E gene requires c-Jun N-terminal kinase, p38 kinase, and casein kinase 2. Arterioscler Thromb Vasc Biol 26:1323–1329PubMedCrossRefGoogle Scholar
  34. 34.
    Mead JR, Hughes TR, Irvine SA, Singh NN, Ramji DP (2003) Interferon-gamma stimulates the expression of the inducible cAMP early repressor in macrophages through the activation of casein kinase 2. A potentially novel pathway for interferon-gamma-mediated inhibition of gene transcription. J Biol Chem 278:17741–17751PubMedCrossRefGoogle Scholar
  35. 35.
    Harvey EJ, Li N, Ramji DP (2007) Critical role for casein kinase 2 and phosphoinositide-3-kinase in the interferon-gamma-induced expression of monocyte chemoattractant protein-1 and other key genes implicated in atherosclerosis. Arterioscler Thromb Vasc Biol 27:806–812PubMedCrossRefGoogle Scholar
  36. 36.
    Higashi K, Inagaki Y, Fujimori K, Nakao A, Kaneko H, Nakatsuka I (2003) Interferon-gamma interferes with transforming growth factor-beta signalling through direct interaction of YB-1 with Smad3. J Biol Chem 44:43470–43479CrossRefGoogle Scholar
  37. 37.
    Yamaguchi Y, Wada T, Suzuki F, Takagi T, Hasegawa J, Handa H (1998) Casein kinase II interacts with the bZIP domains of several transcription factors. Nucleic Acids Res 26:3854–3861PubMedCrossRefGoogle Scholar
  38. 38.
    Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62PubMedCrossRefGoogle Scholar
  39. 39.
    Li Q, Verma IM (2002) NF-kB regulation in the immune system. Nat Rev Immunol 2:725–734PubMedCrossRefGoogle Scholar
  40. 40.
    McElhinny JA, Trushin SA, Bren GD, Chester N, Paya CV (1996) Casein kinase II phosphorylates I kappa B alpha at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol Cell Biol 16:899–906PubMedGoogle Scholar
  41. 41.
    Schwarz EM, Van Antwerp D, Verma IM (1996) Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha. Mol Cell Biol 16:3554–3559PubMedGoogle Scholar
  42. 42.
    Shen J, Channavajhala P, Seldin DC, Sonenshein GE (2001) Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IkappaBalpha. J Immunol 167:4919–4925PubMedGoogle Scholar
  43. 43.
    Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 12:829–839PubMedCrossRefGoogle Scholar
  44. 44.
    Packman LC, Kubota K, Parker J, Gay NJ (1997) Casein kinase II phosphorylates Ser468 in the PEST domain of the Drosophila IkappaB homologue cactus. FEBS Lett 400:45–50PubMedCrossRefGoogle Scholar
  45. 45.
    Nogalski MT, Podduturi JP, DeMeritt IB, Milford LE, Yurochko AD (2007) The human cytomegalovirus virion possesses an activated casein kinase II that allows for the rapid phosphorylation of the inhibitor of NF-kappaB, IkappaBalpha. J Virol 81:5305–5314PubMedCrossRefGoogle Scholar
  46. 46.
    Bird TA, Schooley K, Dower SK, Hagen H, Virca GD (1997) Activation of nuclear transcription factor NF-kappaB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J Biol Chem 272:32606–32612PubMedCrossRefGoogle Scholar
  47. 47.
    Chantome A, Pance A, Gauthier N, Candroux D, Chenu J, Solary E, Jeannin JF, Reveneau S (2004) Casein kinase II-mediated phosphorylation of NF-kappaB p65 subunit enhances inducible nitric-oxide synthase gene transcription in vivo. J Biol Chem 279:23953–23960PubMedCrossRefGoogle Scholar
  48. 48.
    Wang D, Westerheide SD, Hanson JL, Baldwin AS Jr (2000) Tumor necrosis factor-alpha-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J Biol Chem 275:32592–32597PubMedCrossRefGoogle Scholar
  49. 49.
    Kweon SM, Wang B, Rixter D, Lim JH, Koga T, Ishinaga H, Chen LF, Jono H, Xu H, Li JD (2007) Synergistic activation of NF-kappaB by nontypeable H. influenzae and S. pneumoniae is mediated by CK2, IKKbeta-IkappaBalpha, and p38 MAPK. Biochem Biophys Res Commun 351:368–375CrossRefGoogle Scholar
  50. 50.
    Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661PubMedCrossRefGoogle Scholar
  51. 51.
    Saeki K, You A, Takaku F (1999) Cell-cycle-regulated phosphorylation of cAMP response element-binding protein: identification of novel phosphorylation sites. Biochem J 338:49–54PubMedCrossRefGoogle Scholar
  52. 52.
    Horiuchi J, Jiang W, Zhou H, Wu P, Yin JC (2004) Phosphorylation of conserved casein kinase sites regulate cAMP-response element-binding protein DNA binding in Drosophila. J Biol Chem 279:12117–12125PubMedCrossRefGoogle Scholar
  53. 53.
    de Groot RP, den Hertog J, Vandenheede JR, Goris J, Sassone-Corsi P (1993) Multiple and cooperative phosphorylation events regulate the CREM activator function. EMBO J 12:3903–3911PubMedGoogle Scholar
  54. 54.
    Lin R, Hiscott J (1999) A role for casein kinase II phosphorylation in the regulation of IRF-1 transcriptional activity. Mol Cell Biochem 191:169–180PubMedCrossRefGoogle Scholar
  55. 55.
    Giraudo E, Primo L, Audero E, Gerber HP, Koolwijk P, Soker S, Klagsbrun M, Ferrara N, Bussolino F (1998) Tumor necrosis factor-alpha regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells. J Biol Chem 273:22128–22135PubMedCrossRefGoogle Scholar
  56. 56.
    Armstrong SA, Barry DA, Leggett RW, Mueller CR (1997) Casein kinase II-mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity. J Biol Chem 272:13489–13495PubMedCrossRefGoogle Scholar
  57. 57.
    Hughes TR, Tengku-Muhammad TS, Irvine SA, Ramji DP (2002) A novel role of Sp1 and Sp3 in the interferon-γ-mediated suppression of macrophage lipoprotein lipase gene transcription. J Biol Chem 277:11097–11106PubMedCrossRefGoogle Scholar
  58. 58.
    Dunzendorfer S, Lee HK, Tobias PS (2004) Flow-dependent regulation of endothelial Toll-like receptor 2 expression through inhibition of SP1 activity. Circ Res 95:684–691PubMedCrossRefGoogle Scholar
  59. 59.
    Borden P, Heller RA (1997) Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Crit Rev Eukaryot Gene Expr 7:159–178PubMedGoogle Scholar
  60. 60.
    Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377PubMedCrossRefGoogle Scholar
  61. 61.
    Gauthier-Rouviére C, Basset M, Blanchard JM, Cavadore JC, Fernandez A, Lamb NJ (1991) Casein kinase II induces c-fos expression via the serum response element pathway and p67SRF phosphorylation in living fibroblasts. EMBO J 10:2921–2930PubMedGoogle Scholar
  62. 62.
    Lin A, Frost J, Deng T, Smeal T, al-Alawi N, Kikkawa U, Hunter T, Brenner D, Karin M (1992) Casein kinase II is a negative regulator of c-Jun DNA binding and AP-1 activity. Cell 70:777–789PubMedCrossRefGoogle Scholar
  63. 63.
    Moussazadeh M, Greene JJ (2000) Redox regulation of casein kinase II autophosphorylation and its effect on Jun-DNA binding. Cell Mol Biol 46:1265–1275PubMedGoogle Scholar
  64. 64.
    Fritz G, Kaina B (1999) Phosphorylation of the DNA repair protein APE/REF-1 by CKII affects redox regulation of AP-1. Oncogene 18:1033–1040PubMedCrossRefGoogle Scholar
  65. 65.
    Ulery PG, Nestler EJ (2007) Regulation of DeltaFosB transcriptional activity by Ser27 phosphorylation. Eur J Neurosci 25:224–230PubMedCrossRefGoogle Scholar
  66. 66.
    Jain N, Mahendran R, Philp R, Guy GR, Tan YH, Cao X (1996) Casein kinase II associates with Egr-1 and acts as a negative modulator of its DNA binding and transcription activities in NIH 3T3 cells. J Biol Chem 271:13530–13536PubMedCrossRefGoogle Scholar
  67. 67.
    Srivastava S, Weitzmann MN, Kimble RB, Rizzo M, Zahner M, Milbrandt J, Ross FP, Pacifici R (1998) Estrogen blocks M-CSF gene expression and osteoclast formation by regulating phosphorylation of Egr-1 and its interaction with Sp1. J Clin Invest 102:1850–1859PubMedCrossRefGoogle Scholar
  68. 68.
    Ramji DP, Foka P (2002) CCAAT/enhancer binding proteins: structure, function and regulation. Biochem J 365:561–575PubMedGoogle Scholar
  69. 69.
    Osada S, Yamamoto H, Nishihara T, Imagawa M (1996) DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. J Biol Chem 271:3891–3896PubMedCrossRefGoogle Scholar
  70. 70.
    Ubeda M, Habener JF (2003) CHOP transcription factor phosphorylation by casein kinase 2 inhibits transcriptional activation. J Biol Chem 278:40514–40520PubMedCrossRefGoogle Scholar
  71. 71.
    Tipping PG, Holdsworth SR (2007) Cytokines in glomerulonephritis. Semin Nephrol 27:275–285PubMedGoogle Scholar
  72. 72.
    Negulescu O, Bognar I, Lei J, Devarajan P, Silbiger S, Neugarten J (2002) Estradiol reverses TGF-beta1-induced mesangial cell apoptosis by a casein kinase 2-dependent mechanism. Kidney Int 62:1989–1998PubMedCrossRefGoogle Scholar
  73. 73.
    Yamada M, Katsuma S, Adachi T, Hirasawa A, Shiojima S, Kadowaki T, Okuno Y, Koshimizu TA, Fujii S, Sekiya Y, Miyamoto Y, Tamura M, Yumura W, Nihei H, Kobayashi M, Tsujimoto G (2005) Inhibition of protein kinase CK2 prevents the progression of glomerulonephritis. Proc Natl Acad Sci U S A 102:7736–7741PubMedCrossRefGoogle Scholar
  74. 74.
    Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581PubMedCrossRefGoogle Scholar
  75. 75.
    Harvey EJ, Ramji DP (2005) Interferon-γ and atherosclerosis: pro- or anti-atherogenic? Cardiovasc Res 67:11–20PubMedCrossRefGoogle Scholar
  76. 76.
    Agrawal S, Febbraio M, Podrez E, Cathcart MK, Stark GR, Chisolm GM (2007) Signal transducer and activator of transcription 1 is required for optimal foam cell formation and atherosclerotic lesion development. Circulation 115:2939–2947PubMedCrossRefGoogle Scholar
  77. 77.
    Bodor J, Bodorova J, Gress RE (2000) Suppression of T cell function: a potential role for the transcriptional repressor ICER. J Leukoc Biol 67:774–779PubMedGoogle Scholar
  78. 78.
    Ohtsubo H, Ichiki T, Miyazaki R, Inanaga K, Imayama I, Hashiguchi Y, Sadoshima J, Sunagawa K (2007) Inducible cAMP early repressor inhibits growth of vascular smooth muscle cell. Arterioscler Thromb Vasc Biol 27:1549–1555PubMedCrossRefGoogle Scholar
  79. 79.
    Roosbeek S, Peelman F, Verhee A, Labeur C, Caster H, Lensink MF, Cirulli C, Grooten J, Cochet C, Vandekerckhove J, Amoresano A, Chimini G, Tavernier J, Rosseneu M (2004) Phosphorylation by protein kinase CK2 modulates the activity of the ATP binding cassette A1 transporter. J Biol Chem 279:37779–37788PubMedCrossRefGoogle Scholar
  80. 80.
    Lee KS, Park JH, Lee S, Lim HJ, Jang Y, Park HY (2006) Troglitazone inhibits endothelial cell proliferation through suppression of casein kinase 2 activity. Biochem Biophys Res Commun 346:83–88PubMedCrossRefGoogle Scholar
  81. 81.
    Seldin DC, Leder P (1995) Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267:894–897PubMedCrossRefGoogle Scholar
  82. 82.
    Kelliher MA, Seldin DC, Leder P (1996) Tal-1 induces T cell acute lymphoblastic leukaemia accelerated by casein kinase IIa. EMBO J 15:5160–5166PubMedGoogle Scholar
  83. 83.
    Landesman-Bollag E, Song DH, Romieu-Mourez R, Sussman DJ, Cardiff RD, Sonenshein GE, Seldin DC (2001) Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol Cell Biochem 227:153–165PubMedCrossRefGoogle Scholar
  84. 84.
    Faust RA, Tawfic S, Davis AT, Bubash LA, Ahmed K (2000) Antisense oligonucleotides against protein kinase CK2-alpha inhibit growth of squamous cell carcinoma of the head and neck in vitro. Head Neck 22:341–346PubMedCrossRefGoogle Scholar
  85. 85.
    Rifkin IR, Channavajhala PL, Kiefer HL, Carmack AJ, Landesman-Bollag E, Beaudette BC, Jersky B, Salant DJ, Ju ST, Marshak-Rothstein A, Seldin DC (1998) Acceleration of lpr lymphoproliferative and autoimmune disease by transgenic protein kinase CK2 alpha. J Immunol 161:5164–5170PubMedGoogle Scholar
  86. 86.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  87. 87.
    Li Q, Withoff S, Verma IM (2005) Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol 26:318–325PubMedCrossRefGoogle Scholar
  88. 88.
    Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217PubMedCrossRefGoogle Scholar
  89. 89.
    de Visser KE, Coussens LM (2006) The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol 13:118–137PubMedCrossRefGoogle Scholar
  90. 90.
    Li X, Shi X, Liang DY, Clark JD (2005) Spinal CK2 regulates nociceptive signaling in models of inflammatory pain. Pain 2005 115:182–190CrossRefGoogle Scholar
  91. 91.
    Axtell RC, Xu L, Barnum SR, Raman C (2006) CD5-CK2 binding/activation-deficient mice are resistant to experimental autoimmune encephalomyelitis: protection is associated with diminished populations of IL-17-expressing T cells in the central nervous system. J Immunol 177:8542–8549PubMedGoogle Scholar
  92. 92.
    Wang G, Unger G, Ahmad KA, Slaton JW, Ahmed K (2005) Downregulation of CK2 induces apoptosis in cancer cells—a potential approach to cancer therapy. Mol Cell Biochem 274:77–84PubMedCrossRefGoogle Scholar
  93. 93.
    Kramerov AA, Saghizadeh M, Pan H, Kabosova A, Montenarh M, Ahmed K, Penn JS, Chan CK, Hinton DR, Grant MB, Ljubimov AV (2006) Expression of protein kinase CK2 in astroglial cells of normal and neovascularized retina. Am J Pathol 168:1722–1736PubMedCrossRefGoogle Scholar
  94. 94.
    Laudet B, Barette C, Dulery V, Renaudet O, Dumy P, Metz A, Prudent R, Deshiere A, Dideberg O, Filhol O, Cochet C (2007) Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochem J 408:363–373PubMedCrossRefGoogle Scholar
  95. 95.
    Slaton JW, Unger GM, Sloper DT, Davis AT, Ahmed K (2004) Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model. Mol Cancer Res 2:712–721PubMedGoogle Scholar
  96. 96.
    Ahmad KA, Wang G, Slaton J, Unger G, Ahmed K (2005) Targeting CK2 for cancer therapy. Anticancer Drugs 16:1037–1043PubMedCrossRefGoogle Scholar
  97. 97.
    French AC, Luscher B, Litchfield DW (2007) Development of a stabilized form of the regulatory CK2beta subunit that inhibits cell proliferation. J Biol Chem 282:29667–29677PubMedCrossRefGoogle Scholar
  98. 98.
    Perera Y, Farina HG, Hernández I, Mendoza O, Serrano JM, Reyes O, Gómez DE, Gómez RE, Acevedo BE, Alonso DF, Perea SE (2008) Systemic administration of a peptide that impairs the protein kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int J Cancer 122:57–62PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Cardiff School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations