Journal of Molecular Medicine

, Volume 86, Issue 8, pp 861–874 | Cite as

DC-SIGN and L-SIGN: the SIGNs for infection

  • Ui-Soon Khoo
  • Kelvin Y. K. Chan
  • Vera S. F. Chan
  • C. L. Steve Lin
Review

Abstract

Two closely related trans-membrane C-type lectins dendritic cell-specific intracellular adhesion molecules (ICAM)-3 grabbing non-integrin (DC-SIGN or CD209) and liver/lymph node-specific ICAM-3 grabbing non-integrin (L-SIGN also known as DC-SIGNR, CD209L or CLEC4M) directly recognize a wide range of micro-organisms of major impact on public health. Both genes have long been considered to share similar overall structure and ligand-binding characteristics. This review presents more recent biochemical and structural studies, which show that they have distinct ligand-binding properties and different physiological functions. Of importance in both these genes is the presence of an extra-cellular domain consisting of an extended neck region encoded by tandem repeats that support the carbohydrate-recognition domain, which plays a crucial role in influencing the pathogen-binding properties of these receptors. The notable difference between these two genes is in this extra-cellular domain. Whilst the tandem-neck-repeat region remains relatively constant size for DC-SIGN, there is considerable polymorphism for L-SIGN. Homo-oligomerization of the neck region of L-SIGN has been shown to be important for high-affinity ligand binding, and heterozygous expression of the polymorphic variants of L-SIGN in which neck lengths differ could thus affect ligand-binding affinity. Functional studies on the effect of this tandem-neck-repeat region on pathogen-binding, as well as genetic association studies for various infectious diseases and among different populations, are discussed. Worldwide demographic data of the tandem-neck-repeat region showing distinct differences in the neck-region allele and genotype distribution among different ethnic groups are presented. These findings support the neck region as an excellent candidate acting as a functional target for selective pressures exerted by pathogens.

Keywords

Association study Lectins Infection Molecular genetics Population genetics Structural biology 

Supplementary material

109_2008_350_MOESM1_ESM.doc (26 kb)
Supplementary Table 1Frequency distribution of the DC-SIGN −336A/G promoter polymorphism in African, Asian, European, South African colored and Northwestern Colombian populations. (n = number of chromosomes) (DOC 26 kb)
109_2008_350_MOESM2_ESM.doc (406 kb)
Supplementary Fig. 1L-SIGN transfected permissive Vero E6 cells captured/absorbed infectious virus (SARS-CoV) released into the supernatant. Homozygous N7- and heterozygous N7/N5-L-SIGN expressing Vero E6 cells and mock-transfected cells were infected with SARS-CoV. Viral copy number in cell lysates (*) and supernatant (**) for N7-L-SIGN transfected cells was significantly different from that for N5/N7-L-SIGN transfected cells [28]. The N7 and N5 correspond to 7.5 and 5.5 neck-region repeat of L-SIGN according to Feinberg et al. [34]. (DOC 406 kb)
109_2008_350_MOESM3_ESM.doc (26 kb)
Supplementary Fig. 2Allele frequency of the L-SIGN neck-region repeats in different ethnic groups. *Chinese in Hong Kong population reported by Chan et al. [28]; **Chinese in Guangdong population reported by Wang et al. [70]; ***Japanese in Japan reported by Kobayashi et al. [69], and other populations reported by Barreiro et al. [29]. (DOC 26.5 kb)
109_2008_350_MOESM4_ESM.doc (100 kb)
Supplementary Fig. 3Illustration of DC-SIGN and L-SIGN (generated from the HapMap project database). The DC-SIGN and L-SIGN genes are not in linkage disequilibrium with each other as they have separate haplotype blocks. Based on the HapMap data, a recombination hotpot is suggested to be located between these two genes, as indicated by a black color bar (DOC 100 kb)

Reference

  1. 1.
    Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van KY, Figdor CG (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–585PubMedCrossRefGoogle Scholar
  2. 2.
    Pohlmann S, Soilleux EJ, Baribaud F, Leslie GJ, Morris LS, Trowsdale J, Lee B, Coleman N, Doms RW (2001) DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc Natl Acad Sci USA 98:2670–2675PubMedCrossRefGoogle Scholar
  3. 3.
    Soilleux EJ, Barten R, Trowsdale J (2000) DC-SIGN; a related gene, DC-SIGNR; and CD23 form a cluster on 19p13. J Immunol 165:2937–2942 Ref Type: JournalPubMedGoogle Scholar
  4. 4.
    Bashirova AA, Wu L, Cheng J, Martin TD, Martin MP, Benveniste RE, Lifson JD, KewalRamani VN, Hughes A, Carrington M (2003) Novel member of the CD209 (DC-SIGN) gene family in primates. J Virol 77:217–227PubMedCrossRefGoogle Scholar
  5. 5.
    Soilleux EJ (2003) DC-SIGN (dendritic cell-specific ICAM-grabbing non-integrin) and DC-SIGN-related (DC-SIGNR): friend or foe? Clin Sci (Lond) 104:437–446CrossRefGoogle Scholar
  6. 6.
    Feinberg H, Mitchell DA, Drickamer K, Weis WI (2001) Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR. Science 294:2163–2166PubMedCrossRefGoogle Scholar
  7. 7.
    Mitchell DA, Fadden AJ, Drickamer K (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276:28939–28945PubMedCrossRefGoogle Scholar
  8. 8.
    Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van KY (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597PubMedCrossRefGoogle Scholar
  9. 9.
    Alvarez CP, Lasala F, Carrillo J, Muniz O, Corbi AL, Delgado R (2002) C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 76:6841–6844PubMedCrossRefGoogle Scholar
  10. 10.
    Lin G, Simmons G, Pohlmann S, Baribaud F, Ni H, Leslie GJ, Haggarty BS, Bates P, Weissman D, Hoxie JA, Doms RW (2003) Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol 77:1337–1346PubMedCrossRefGoogle Scholar
  11. 11.
    Simmons G, Reeves JD, Grogan CC, Vandenberghe LH, Baribaud F, Whitbeck JC, Burke E, Buchmeier MJ, Soilleux EJ, Riley JL, Doms RW, Bates P, Pohlmann S (2003) DC-SIGN and DC-SIGNR bind Ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305:115–123PubMedCrossRefGoogle Scholar
  12. 12.
    Marzi A, Gramberg T, Simmons G, Moller P, Rennekamp AJ, Krumbiegel M, Geier M, Eisemann J, Turza N, Saunier B, Steinkasserer A, Becker S, Bates P, Hofmann H, Pohlmann S (2004) DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol 78:12090–12095PubMedCrossRefGoogle Scholar
  13. 13.
    Cormier EG, Durso RJ, Tsamis F, Boussemart L, Manix C, Olson WC, Gardner JP, Dragic T (2004) L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc Natl Acad Sci U S A 101:14067–14072PubMedCrossRefGoogle Scholar
  14. 14.
    Gardner JP, Durso RJ, Arrigale RR, Donovan GP, Maddon PJ, Dragic T, Olson WC (2003) L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci U S A 100:4498–4503PubMedCrossRefGoogle Scholar
  15. 15.
    Lozach PY, Amara A, Bartosch B, Virelizier JL, renzana-Seisdedos F, Cosset FL, Altmeyer R (2004) C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem 279:32035–32045PubMedCrossRefGoogle Scholar
  16. 16.
    Pohlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli-Piperno A, Doms RW, Rice CM, McKeating JA (2003) Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 77:4070–4080PubMedCrossRefGoogle Scholar
  17. 17.
    Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL, Steinman RM, Schlesinger S, Marovich MA (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197:823–829PubMedCrossRefGoogle Scholar
  18. 18.
    Halary F, Amara A, Lortat-Jacob H, Messerle M, Delaunay T, Houles C, Fieschi F, renzana-Seisdedos F, Moreau JF, chanet-Merville J (2002) Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17:653–664PubMedCrossRefGoogle Scholar
  19. 19.
    Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, Subbarao K, Nabel GJ (2004) pH-Dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 78:5642–5650PubMedCrossRefGoogle Scholar
  20. 20.
    Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127PubMedCrossRefGoogle Scholar
  21. 21.
    Appelmelk BJ, Van DI, van Vliet SJ, Vandenbroucke-Grauls CM, Geijtenbeek TB, van KY (2003) Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol 170:1635–1639PubMedGoogle Scholar
  22. 22.
    Bergman MP, Engering A, Smits HH, van Vliet SJ, van Bodegraven AA, Wirth HP, Kapsenberg ML, Vandenbroucke-Grauls CM, van KY, Appelmelk BJ (2004) Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J Exp Med 200:979–990PubMedCrossRefGoogle Scholar
  23. 23.
    Caparros E, Serrano D, Puig-Kroger A, Riol L, Lasala F, Martinez I, Vidal-Vanaclocha F, Delgado R, Rodriguez-Fernandez JL, Rivas L, Corbi AL, Colmenares M (2005) Role of the C-type lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes. Immunobiology 210:185–193PubMedCrossRefGoogle Scholar
  24. 24.
    Bashirova AA, Geijtenbeek TB, van Duijnhoven GC, van Vliet SJ, Eilering JB, Martin MP, Wu L, Martin TD, Viebig N, Knolle PA, KewalRamani VN, van KY, Carrington M (2001) A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 193:671–678PubMedCrossRefGoogle Scholar
  25. 25.
    Lozach PY, Lortat-Jacob H, de Lacroix de LA, Staropoli I, Foung S, Amara A, Houles C, Fieschi F, Schwartz O, Virelizier JL, renzana-Seisdedos F, Altmeyer R (2003) DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 278:20358–20366PubMedCrossRefGoogle Scholar
  26. 26.
    Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, Thomas WD Jr., Thackray LB, Young MD, Mason RJ, Ambrosino DM, Wentworth DE, Demartini JC, Holmes KV (2004) CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A 101:15748–15753PubMedCrossRefGoogle Scholar
  27. 27.
    Koppel EA, Ludwig IS, Hernandez MS, Lowary TL, Gadikota RR, Tuzikov AB, Vandenbroucke-Grauls CM, van KY, Appelmelk BJ, Geijtenbeek TB (2004) Identification of the mycobacterial carbohydrate structure that binds the C-type lectins DC-SIGN, L-SIGN and SIGNR1. Immunobiology 209:117–127PubMedCrossRefGoogle Scholar
  28. 28.
    Chan VS, Chan KY, Chen Y, Poon LL, Cheung AN, Zheng B, Chan KH, Mak W, Ngan HY, Xu X, Screaton G, Tam PK, Austyn JM, Chan LC, Yip SP, Peiris M, Khoo US, Lin CL (2006) Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nat Genet 38:38–46PubMedCrossRefGoogle Scholar
  29. 29.
    Barreiro LB, Patin E, Neyrolles O, Cann HM, Gicquel B, Quintana-Murci L (2005) The heritage of pathogen pressures and ancient demography in the human innate-immunity CD209/CD209L region. Am J Hum Genet 77:869–886PubMedCrossRefGoogle Scholar
  30. 30.
    Engering A, Geijtenbeek TB, van Vliet SJ, Wijers M, van LE, Demaurex N, Lanzavecchia A, Fransen J, Figdor CG, Piguet V, van KY (2002) The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 168:2118–2126PubMedGoogle Scholar
  31. 31.
    Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, Steinman RM (2000) The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 151:673–684PubMedCrossRefGoogle Scholar
  32. 32.
    Koppel EA, van Gisbergen KP, Geijtenbeek TB, van KY (2005) Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell Microbiol 7:157–165PubMedCrossRefGoogle Scholar
  33. 33.
    Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, Taylor ME, Weis WI, Drickamer K (2004) Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11:591–598PubMedCrossRefGoogle Scholar
  34. 34.
    Feinberg H, Guo Y, Mitchell DA, Drickamer K, Weis WI (2005) Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J Biol Chem 280:1327–1335PubMedCrossRefGoogle Scholar
  35. 35.
    Geijtenbeek TB, van Duijnhoven GC, van Vliet SJ, Krieger E, Vriend G, Figdor CG, van KY (2002) Identification of different binding sites in the dendritic cell-specific receptor DC-SIGN for intercellular adhesion molecule 3 and HIV-1. J Biol Chem 277:11314–11320PubMedCrossRefGoogle Scholar
  36. 36.
    Snyder GA, Colonna M, Sun PD (2005) The structure of DC-SIGNR with a portion of its repeat domain lends insights to modeling of the receptor tetramer. J Mol Biol 347:979–989PubMedCrossRefGoogle Scholar
  37. 37.
    Bernhard OK, Lai J, Wilkinson J, Sheil MM, Cunningham AL (2004) Proteomic analysis of DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association with CD4. J Biol Chem 279:51828–51835PubMedCrossRefGoogle Scholar
  38. 38.
    Snyder GA, Ford J, Torabi-Parizi P, Arthos JA, Schuck P, Colonna M, Sun PD (2005) Characterization of DC-SIGN/R interaction with human immunodeficiency virus type 1 gp120 and ICAM molecules favors the receptor’s role as an antigen-capturing rather than an adhesion receptor. J Virol 79:4589–4598PubMedCrossRefGoogle Scholar
  39. 39.
    Guo Y, Atkinson CE, Taylor ME, Drickamer K (2006) All but the shortest polymorphic forms of the viral receptor DC-SIGNR assemble into stable homo- and heterotetramers. J Biol Chem 281:16794–16798PubMedCrossRefGoogle Scholar
  40. 40.
    Hsu M, Zhang J, Flint M, Logvinoff C, Cheng-Mayer C, Rice CM, McKeating JA (2003) Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100:7271–7276PubMedCrossRefGoogle Scholar
  41. 41.
    Kliger Y, Levanon EY (2003) Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy. BMC Microbiol 3:20PubMedCrossRefGoogle Scholar
  42. 42.
    Klimstra WB, Nangle EM, Smith MS, Yurochko AD, Ryman KD (2003) DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell- and mammalian cell-derived viruses. J Virol 77:12022–12032PubMedCrossRefGoogle Scholar
  43. 43.
    Mummidi S, Catano G, Lam L, Hoefle A, Telles V, Begum K, Jimenez F, Ahuja SS, Ahuja SK (2001) Extensive repertoire of membrane-bound and soluble dendritic cell-specific ICAM-3-grabbing nonintegrin 1 (DC-SIGN1) and DC-SIGN2 isoforms. Inter-individual variation in expression of DC-SIGN transcripts. J Biol Chem 276:33196–33212PubMedCrossRefGoogle Scholar
  44. 44.
    Liu H, Hladik F, Andrus T, Sakchalathorn P, Lentz GM, Fialkow MF, Corey L, McElrath MJ, Zhu T (2005) Most DC-SIGNR transcripts at mucosal HIV transmission sites are alternatively spliced isoforms. Eur J Hum Genet 13:707–715PubMedCrossRefGoogle Scholar
  45. 45.
    Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16:135–144PubMedCrossRefGoogle Scholar
  46. 46.
    van KY, Geijtenbeek TB (2003) DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697–709CrossRefGoogle Scholar
  47. 47.
    Ludwig IS, Lekkerkerker AN, Depla E, Bosman F, Musters RJ, Depraetere S, van KY, Geijtenbeek TB (2004) Hepatitis C virus targets DC-SIGN and L-SIGN to escape lysosomal degradation. J Virol 78:8322–8332PubMedCrossRefGoogle Scholar
  48. 48.
    Lai WK, Sun PJ, Zhang J, Jennings A, Lalor PF, Hubscher S, McKeating JA, Adams DH (2006) Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis C virus particles. Am J Pathol 169:200–208PubMedCrossRefGoogle Scholar
  49. 49.
    Trumpfheller C, Park CG, Finke J, Steinman RM, Granelli-Piperno A (2003) Cell type-dependent retention and transmission of HIV-1 by DC-SIGN. Int Immunol 2:289–298CrossRefGoogle Scholar
  50. 50.
    Chen Y, Chan VS, Zheng B, Chan KY, Xu X, To LY, Huang FP, Khoo US, Lin CL (2007) A novel subset of putative stem/progenitor CD34+Oct-4+ cells is the major target for SARS coronavirus in human lung. J Exp Med 204:2529–2536PubMedCrossRefGoogle Scholar
  51. 51.
    Gramberg T, Zhu T, Chaipan C, Marzi A, Liu H, Wegele A, Andrus T, Hofmann H, Pohlmann S (2006) Impact of polymorphisms in the DC-SIGNR neck domain on the interaction with pathogens. Virology 347:354–363PubMedCrossRefGoogle Scholar
  52. 52.
    Tang NL, Chan PK, Hui DS, To KF, Zhang W, Chan FK, Sung JJ, Lo YM (2007) Lack of support for an association between CLEC4M homozygosity and protection against SARS coronavirus infection. Nat Genet 39:691–692PubMedCrossRefGoogle Scholar
  53. 53.
    Chan KY, Chan VS, Chen Y, Yip SP, Lin CL, Khoo US (2007) Reply to “Lack of support for an association between CLEC4M homozygosity and protection against SARS coronavirus infection”. Nat Genet 39:694–696CrossRefGoogle Scholar
  54. 54.
    Lichterfeld M, Nischalke HD, van LJ, Sohne J, Schmeisser N, Woitas R, Sauerbruch T, Rockstroh JK, Spengler U (2003) The tandem-repeat polymorphism of the DC-SIGNR gene does not affect the susceptibility to HIV infection and the progression to AIDS. Clin Immunol 107:55–59PubMedCrossRefGoogle Scholar
  55. 55.
    Liu H, Carrington M, Wang C, Holte S, Lee J, Greene B, Hladik F, Koelle DM, Wald A, Kurosawa K, Rinaldo CR, Celum C, Detels R, Corey L, McElrath MJ, Zhu T (2006) Repeat-region polymorphisms in the gene for the dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin-related molecule: effects on HIV-1 susceptibility. J Infect Dis 193:698–702PubMedCrossRefGoogle Scholar
  56. 56.
    Barreiro LB, Quintana-Murci L (2006) DC-SIGNR neck-region polymorphisms and HIV-1 susceptibility: from population stratification to a possible advantage of the 7/5 heterozygous genotype. J Infect Dis 194:1184–1185PubMedCrossRefGoogle Scholar
  57. 57.
    Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB (1997) Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet 16:100–103PubMedCrossRefGoogle Scholar
  58. 58.
    Wichukchinda N, Kitamura Y, Rojanawiwat A, Nakayama EE, Song H, Pathipvanich P, Auwanit W, Sawanpanyalert P, Iwamoto A, Shioda T, Ariyoshi K (2007) The polymorphisms in DC-SIGNR affect susceptibility to HIV type 1 infection. AIDS Res Hum Retroviruses 23:686–692PubMedCrossRefGoogle Scholar
  59. 59.
    Nattermann J, Ahlenstiel G, Berg T, Feldmann G, Nischalke HD, Muller T, Rockstroh J, Woitas R, Sauerbruch T, Spengler U (2006) The tandem-repeat polymorphism of the DC-SIGNR gene in HCV infection. J Viral Hepat 13:42–46PubMedCrossRefGoogle Scholar
  60. 60.
    Barreiro LB, Neyrolles O, Babb CL, van Helden PD, Gicquel B, Hoal EG, Quintana-Murci L (2007) Length variation of DC-SIGN and L-SIGN neck-region has no impact on tuberculosis susceptibility. Hum Immunol 68:106–112PubMedCrossRefGoogle Scholar
  61. 61.
    Sakuntabhai A, Turbpaiboon C, Casademont I, Chuansumrit A, Lowhnoo T, Kajaste-Rudnitski A, Kalayanarooj SM, Tangnararatchakit K, Tangthawornchaikul N, Vasanawathana S, Chaiyaratana W, Yenchitsomanus PT, Suriyaphol P, Avirutnan P, Chokephaibulkit K, Matsuda F, Yoksan S, Jacob Y, Lathrop GM, Malasit P, Despres P, Julier C (2005) A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet 37:507–513PubMedCrossRefGoogle Scholar
  62. 62.
    Martin MP, Lederman MM, Hutcheson HB, Goedert JJ, Nelson GW, van KY, Detels R, Buchbinder S, Hoots K, Vlahov D, O, Brien SJ, Carrington M (2004) Association of DC-SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection. J Virol 78:14053–14056PubMedCrossRefGoogle Scholar
  63. 63.
    Piguet V, Blauvelt A (2002) Essential roles for dendritic cells in the pathogenesis and potential treatment of HIV disease1. J Invest Dermatol 119:365–369PubMedCrossRefGoogle Scholar
  64. 64.
    Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H, McElreavey K, Helden PD, Hoal EG, Gicquel B, Quintana-Murci L (2006) Promoter variation in the DC.SIGN.encoding gene CD209 is associated with tuberculosis. PLoS Med 3:e20 Ref Type: JournalPubMedCrossRefGoogle Scholar
  65. 65.
    Gomez LM, Anaya JM, Sierra-Filardi E, Cadena J, Corbi A, Martin J (2006) Analysis of DC-SIGN (CD209) functional variants in patients with tuberculosis. Hum Immunol 67:808–811PubMedCrossRefGoogle Scholar
  66. 66.
    Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322:422–427PubMedGoogle Scholar
  67. 67.
    Stead WW (1992) Genetics and resistance to tuberculosis. Could resistance be enhanced by genetic engineering?. Ann Intern Med 116:937–941PubMedGoogle Scholar
  68. 68.
    Cann HM, de TC, Cazes L, Legrand MF, Morel V, Piouffre L, Bodmer J, Bodmer WF, Bonne-Tamir B, Cambon-Thomsen A, Chen Z, Chu J, Carcassi C, Contu L, Du R, Excoffier L, Ferrara GB, Friedlaender JS, Groot H, Gurwitz D, Jenkins T, Herrera RJ, Huang X, Kidd J, Kidd KK, Langaney A, Lin AA, Mehdi SQ, Parham P, Piazza A, Pistillo MP, Qian Y, Shu Q, Xu J, Zhu S, Weber JL, Greely HT, Feldman MW, Thomas G, Dausset J, Cavalli-Sforza LL (2002) A human genome diversity cell line panel. Science 296:261–262PubMedCrossRefGoogle Scholar
  69. 69.
    Kobayashi N, Nakamura HT, Goto M, Nakamura T, Nakamura K, Sugiura W, Iwamoto A, Kitamura Y (2002) Polymorphisms and haplotypes of the CD209L gene and their association with the clinical courses of HIV-positive Japanese patients. Jpn J Infect Dis 55:131–133PubMedGoogle Scholar
  70. 70.
    Wang H, Hu YD, Wang CH, Dong XM, Li LX, Liu FP, Yan LB, Zhou P, Tong XD, Shi LL, Xiao X, Zhu TF, Zhou BP (2006) Analysis of DC-SIGN and DC-SIGNR genetic polymorphism in Chinese Han population. Zhonghua Yi. Xue. Yi. Chuan Xue. Za Zhi. 23:466–469PubMedGoogle Scholar
  71. 71.
    Harding RM, Fullerton SM, Griffiths RC, Bond J, Cox MJ, Schneider JA, Moulin DS, Clegg JB (1997) Archaic African and Asian lineages in the genetic ancestry of modern humans. Am J Hum Genet 60:772–789PubMedGoogle Scholar
  72. 72.
    Bamshad MJ, Mummidi S, Gonzalez E, Ahuja SS, Dunn DM, Watkins WS, Wooding S, Stone AC, Jorde LB, Weiss RB, Ahuja SK (2002) A strong signature of balancing selection in the 5’ cis-regulatory region of CCR5. Proc Natl Acad Sci U S A 99:10539–10544PubMedCrossRefGoogle Scholar
  73. 73.
    Wooding S, Kim UK, Bamshad MJ, Larsen J, Jorde LB, Drayna D (2004) Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am J Hum Genet 74:637–646PubMedCrossRefGoogle Scholar
  74. 74.
    Trowsdale J, Parham P (2004) Mini-review: defense strategies and immunity-related genes. Eur J Immunol 34:7–17 Ref Type: JournalPubMedCrossRefGoogle Scholar
  75. 75.
    Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O, Drakesmith H, Davies K, Kessler B, McMichael A, Simmons A (2007) Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8:569–577PubMedCrossRefGoogle Scholar
  76. 76.
    Soilleux EJ, Morris LS, Lee B, Pohlmann S, Trowsdale J, Doms RW, Coleman N (2001) Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. J Pathol 195:586–592PubMedCrossRefGoogle Scholar
  77. 77.
    Soilleux EJ, Morris LS, Leslie G, Chehimi J, Luo Q, Levroney E, Trowsdale J, Montaner LJ, Doms RW, Weissman D, Coleman N, Lee B (2002) Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71:445–457PubMedGoogle Scholar
  78. 78.
    Jameson B, Baribaud F, Pohlmann S, Ghavimi D, Mortari F, Doms RW, Iwasaki A (2002) Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J Virol 76:1866–1875PubMedCrossRefGoogle Scholar
  79. 79.
    Engering A, van Vliet SJ, Hebeda K, Jackson DG, Prevo R, Singh SK, Geijtenbeek TB, van KH, van KY (2004) Dynamic populations of dendritic cell-specific ICAM-3 grabbing nonintegrin-ositive immature dendritic cells and liver/lymph node-specific ICAM-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. Am J Pathol 164:1587–1595PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ui-Soon Khoo
    • 1
  • Kelvin Y. K. Chan
    • 1
  • Vera S. F. Chan
    • 2
  • C. L. Steve Lin
    • 2
  1. 1.Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
  2. 2.Division of Surgery, Oncology, Reproduction Biology and Anaesthetics, Faculty of MedicineImperial College LondonLondonUK

Personalised recommendations