Journal of Molecular Medicine

, Volume 86, Issue 4, pp 413–422

Inhibitory effect of the anorexic compound oleoylethanolamide on gastric emptying in control and overweight mice

  • Gabriella Aviello
  • Isabel Matias
  • Raffaele Capasso
  • Stefania Petrosino
  • Francesca Borrelli
  • Pierangelo Orlando
  • Barbara Romano
  • Francesco Capasso
  • Vincenzo Di Marzo
  • Angelo A. Izzo
Original Article

Abstract

Gastric emptying regulates food intake. Oleoylethanolamide (OEA), an endogenous acylethanolamide chemically related to the endocannabinoid anandamide, inhibits food intake, but its effect on gastric emptying is unknown. Here, we investigated the effect and the role of OEA on gastric emptying in mice fed either a standard (STD) or a high-fat diet (HFD) for 14 weeks. Gastric emptying was reduced by OEA, but not by its saturated analog, palmitoylethanolamide. The effect of OEA was unaffected by rimonabant (cannabinoid CB1 receptor antagonist), SR144528 (cannabinoid CB2 receptor antagonist), 5′-iodoresiniferatoxin (transient receptor potential vanilloid type 1 antagonist), or MK886 (peroxisome proliferator-activated receptor-α) antagonist. Compared to STD mice, HFD mice showed delayed gastric emptying and higher levels of gastric OEA. HFD-induced increase in OEA levels was accompanied by increased expression of the OEA-synthesizing enzyme N-acyl-phosphatidylethanolamine-selective phospholipase D and decreased expression of the OEA-degrading enzyme fatty acid amide hydrolase. These results might suggest that elevation of gastric OEA could possibly contribute to the delayed gastric emptying observed in HFD-fed animals. HFD regulates OEA levels in the stomach through an increase of its biosynthesis and a decrease of its enzymatic degradation. The inhibitory effect of OEA on gastric emptying here observed might underlie part of the anorexic effects of this compound previously reported.

Keywords

Cannabinoid receptors Endocannabinoids Gastric motility Obesity Oleoylethanolamide Fatty acid amide hydrolase (FAAH) 

Abbreviations

AA-5-HT

N-arachidonoylserotonin

2-AG

2-arachidonoylglycerol

DMSO

Dimethylsulfoxide

FAAH

Fatty acid amide hydrolase

HFD

High-fat diet

OEA

Oleoylethanolamide

I-RTX

5′-iodoresiniferatoxin

NAPE-PLD

N-acyl-phosphatidylethanolamine-selective phospholipase D

PEA

Palmitoylethanolamide

PPAR

Peroxisome proliferator-activated receptor

RT-PCR

Reverse-transcription polymerase chain reaction

TRPV1

Transient receptor potential vanilloid type-1

STD

Standard diet

References

  1. 1.
    Lo Verme J, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D (2005) Regulation of food intake by oleoylethanolamide. Cell Mol Life Sci 62:708–716PubMedCrossRefGoogle Scholar
  2. 2.
    Matias I, Gonthier MP, Petrosino S, Docimo L, Capasso R, Hoareau L, Monteleone P, Roche R, Izzo AA, Di Marzo V (2007) Role and regulation of acylethanolamides in energy balance: focus on adipocytes and beta-cells. Br J Pharmacol 152:676–690PubMedCrossRefGoogle Scholar
  3. 3.
    O’Sullivan SE (2007) Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors. Br J Pharmacol 152:576–582PubMedCrossRefGoogle Scholar
  4. 4.
    Proulx K, Cota D, Castaneda TR, Tschop MH, D’Alessio DA, Tso P, Woods SC, Seeley RJ (2005) Mechanisms of oleoylethanolamide-induced changes in feeding behavior and motor activity. Am J Physiol Regul Integr Comp Physiol 289:R729–R737PubMedGoogle Scholar
  5. 5.
    Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, Murillo-Rodriguez E, Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D (2001) An anorexic lipid mediator regulated by feeding. Nature 414:209–212PubMedCrossRefGoogle Scholar
  6. 6.
    Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425:90–93PubMedCrossRefGoogle Scholar
  7. 7.
    Gaetani S, Oveisi F, Piomelli D (2003) Modulation of meal pattern in the rat by the anorexic lipid mediator oleoylethanolamide. Neuropsychopharmacology 28:1311–1316PubMedCrossRefGoogle Scholar
  8. 8.
    Guzman M, Lo Verme J, Fu J, Oveisi F, Blazquez C, Piomelli D (2004) Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem 279:27849–27854PubMedCrossRefGoogle Scholar
  9. 9.
    Nielsen MJ, Petersen G, Astrup A, Hansen HS (2004) Food intake is inhibited by oral oleoylethanolamide. J Lipid Res 45:1027–1029PubMedCrossRefGoogle Scholar
  10. 10.
    Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D (2005) Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology 48:1147–1153PubMedCrossRefGoogle Scholar
  11. 11.
    Movahed P, Jonsson BA, Birnir B, Wingstrand JA, Jorgensen TD, Ermund A, Sterner O, Zygmunt PM, Hogestatt ED (2005) Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J Biol Chem 280:38496–38504PubMedCrossRefGoogle Scholar
  12. 12.
    Wang X, Miyares RL, Ahern GP (2005) Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J Physiol 564:541–547PubMedCrossRefGoogle Scholar
  13. 13.
    Petersen G, Sorensen C, Schmid PC, Artmann A, Tang-Christensen M, Hansen SH, Larsen PJ, Schmid HH, Hansen HS (2006) Intestinal levels of anandamide and oleoylethanolamide in food-deprived rats are regulated through their precursors. Biochim Biophys Acta 1761:143–150PubMedGoogle Scholar
  14. 14.
    Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, Mackie K, Piomelli D (2007) Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J Biol Chem 282:1518–1528PubMedCrossRefGoogle Scholar
  15. 15.
    Yang Y, Chen M, Georgeson KE, Harmon CM (2007) Mechanism of oleoylethanolamide on fatty acid uptake in small intestine after food intake and body weight education. Am J Physiol Regul Integr Comp Physiol 292:R235–R241PubMedGoogle Scholar
  16. 16.
    Cuomo R, Sarnelli G (2004) Food intake and gastrointestinal motility. A complex interplay. Nutr Metab Cardiovasc Dis 14:173–179PubMedCrossRefGoogle Scholar
  17. 17.
    Park MI, Camilleri M (2005) Gastric motor and sensory functions in obesity. Obes Res 13:491–500PubMedCrossRefGoogle Scholar
  18. 18.
    Cummings DE, Overduin J (2007) Gastrointestinal regulation of food intake. J Clin Invest 117:13–23PubMedCrossRefGoogle Scholar
  19. 19.
    Hellstrom PM, Naslund E (2001) Interactions between gastric emptying and satiety, with special reference to glucagon-like peptide-1. Physiol Behav 74:735–741PubMedCrossRefGoogle Scholar
  20. 20.
    Serrano A, Del Arco I, Javier Pavon F, Macias M, Perez-Valero V, Rodriguez de Fonseca F (2008) The cannabinoid CB1 receptor antagonist SR141716A (Rimonabant) enhances the metabolic benefits of long-term treatment with oleoylethanolamide in Zucker rats. Neuropharmacology 54:226–234PubMedCrossRefGoogle Scholar
  21. 21.
    Darmani NA, Izzo AA, Degenhardt B, Valenti M, Scaglione G, Capasso R, Sorrentini I, Di Marzo V (2005) Involvement of the cannabimimetic compound, N-palmitoyl-ethanolamine, in inflammatory and neuropathic conditions: review of the available pre-clinical data, and first human studies. Neuropharmacology 48:1154–1163PubMedCrossRefGoogle Scholar
  22. 22.
    Capasso R, Matias I, Lutz B, Borrelli F, Capasso F, Marsicano G, Mascolo N, Petrosino S, Monory K, Valenti M, Di Marzo V, Izzo AA (2005) Fatty acid amide hydrolase controls mouse intestinal motility in vivo. Gastroenterology 129:941–951PubMedCrossRefGoogle Scholar
  23. 23.
    Collino M, Aragno M, Mastrocola R, Benetti E, Gallicchio M, Dianzani C, Danni O, Thiemermann C, Fantozzi R (2006) Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643. Free Radic Biol Med 41:579–589PubMedCrossRefGoogle Scholar
  24. 24.
    Di Marzo V, Capasso R, Matias I, Aviello G, Petrosino S, Borrelli F, Orlando P, Capasso F, Izzo AA (2008) The role of endocannabinoids in the regulation of gastric emptying: alterations in mice fed a high fat diet. Br J Pharmacol Jan 28 [Epub ahead of print]Google Scholar
  25. 25.
    El-Salhy M (2001) Gastric emptying in an animal model of human diabetes type 1: relation to endocrine cells. Acta Diabetol 38:139–144PubMedCrossRefGoogle Scholar
  26. 26.
    Bisogno T, Berrendero F, Ambrosino G, Cebeira M, Ramos JA, Fernandez-Ruiz JJ, Di Marzo V (1999) Brain regional distribution of endocannabinoids: implications for their biosynthesis and biological function. Biochem Biophys Res Commun 256:377–380PubMedCrossRefGoogle Scholar
  27. 27.
    Izzo AA, Aviello G, Petrosino S, Orlando P, Marsicano G, Lutz B, Borrelli F, Capasso E, Nigam S, Capasso D, Di Marzo V (2008) Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon. J Mol Med 86:89–98PubMedCrossRefGoogle Scholar
  28. 28.
    D’Argenio G, Petrosino S, Gianfrani C, Valenti M, Scaglione G, Grandone I, Nigam S, Sorrentini I, Mazzarella G, Di Marzo V (2007) Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats. J Mol Med 85:523–530PubMedCrossRefGoogle Scholar
  29. 29.
    Bisogno T, Melck D, De Petrocellis L, Bobrov MYu, Gretskaya NM, Bezuglov VV, Sitachitta N, Gerwick WH, Di Marzo V (1998) Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun 248:515–522PubMedCrossRefGoogle Scholar
  30. 30.
    Suardiaz M, Estivill-Torrus G, Goicoechea C, Bilbao A, Rodriguez de Fonseca F (2007) Analgesic properties of oleoylethanolamide (OEA) in visceral and nflammatory pain. Pain 133:99–110PubMedCrossRefGoogle Scholar
  31. 31.
    Ambrosini A, Zolese G, Ambrosi S, Ragni L, Tiano L, Littarru G, Bertoli E, Mantero F, Boscaro M, Balercia G (2006) Oleoylethanolamide protects human sperm cells from oxidation stress: studies on cases of idiopathic infertility. Biol Reprod 74: 659–665PubMedCrossRefGoogle Scholar
  32. 32.
    Jonsson KO, Vandevoorde S, Lambert DM, Tiger G, Fowler CJ (2001) Effects of homologues and analogues of palmitoylethanolamide upon the inactivation of the endocannabinoid anandamide. Br J Pharmacol 133:1263–1275PubMedCrossRefGoogle Scholar
  33. 33.
    Duncan M, Davison JS, Sharkey KA (2005) Review article: endocannabinoids and their receptors in the enteric nervous system. Aliment Pharmacol Ther 22:667–683PubMedCrossRefGoogle Scholar
  34. 34.
    Massa F, Storr M, Lutz B (2005) The endocannabinoid system in the physiology and pathophysiology of the gastrointestinal tract. J Mol Med 83:944–954PubMedCrossRefGoogle Scholar
  35. 35.
    Di Marzo V, Izzo AA (2006) Endocannabinoid overactivity and intestinal inflammation. Gut 55:1373–1376PubMedCrossRefGoogle Scholar
  36. 36.
    Izzo AA (2007) The cannabinoid CB(2) receptor: a good friend in the gut. Neurogastroenterol Motil 19:704–708PubMedCrossRefGoogle Scholar
  37. 37.
    Ahern GP (2003) Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem 278:30429–30434PubMedCrossRefGoogle Scholar
  38. 38.
    Holzer P (2004) TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur J Pharmacol 500:231–241PubMedCrossRefGoogle Scholar
  39. 39.
    Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006) Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 3:167–175PubMedCrossRefGoogle Scholar
  40. 40.
    Wisen O, Hellstrom PM (1995) Gastrointestinal motility in obesity. J Intern Med 237:411–418PubMedCrossRefGoogle Scholar
  41. 41.
    Asakawa A, Inui A, Ueno N, Makino S, Uemoto M, Fujino MA, Kasuga M (2003) Ob/ob mice as a model of delayed gastric emptying. J Diabetes Complications 17:27–28PubMedCrossRefGoogle Scholar
  42. 42.
    Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Gabriella Aviello
    • 1
  • Isabel Matias
    • 2
  • Raffaele Capasso
    • 1
  • Stefania Petrosino
    • 2
    • 3
  • Francesca Borrelli
    • 1
  • Pierangelo Orlando
    • 4
  • Barbara Romano
    • 1
  • Francesco Capasso
    • 1
  • Vincenzo Di Marzo
    • 2
  • Angelo A. Izzo
    • 1
  1. 1.Endocannabinoid Research Group, Department of Experimental PharmacologyUniversity of Naples Federico IINaplesItaly
  2. 2.Endocannabinoid Research Group, Institute of Biomolecular ChemistryNational Research CouncilPozzuoliItaly
  3. 3.Endocannabinoid Research Group, Department of Pharmaceutical SciencesUniversity of SalernoFiscianoItaly
  4. 4.Endocannabinoid Research Group, Institute of Protein BiochemistryNational Research CouncilNaplesItaly

Personalised recommendations