Advertisement

Journal of Molecular Medicine

, Volume 86, Issue 3, pp 267–279 | Cite as

Heme oxygenase and carbon monoxide initiate homeostatic signaling

  • Martin Bilban
  • Arvand Haschemi
  • Barbara Wegiel
  • Beek Y. Chin
  • Oswald Wagner
  • Leo E. Otterbein
Review

Abstract

Carbon monoxide (CO), a gaseous second messenger, arises in biological systems during the oxidative catabolism of heme by the heme oxygenase (HO) enzymes. Many biological functions of HO, such as regulation of vessel tone, smooth muscle cell proliferation, neurotransmission, and platelet aggregation, and anti-inflammatory and antiapoptotic effects have been attributed to its enzymatic product, CO. How can such diverse actions be achieved by a simple diatomic gas; can its protective effects be explained via regulation of a common signaling pathway? A number of the known signaling effects of CO depend on stimulation of soluble guanylate cyclase and/or activation of mitogen-activated protein kinases. The consequences of this activation remain unknown but appear to differ depending on cell type and circumstances. The majority of studies reporting a protective role of CO focus on pathways initiated by the pathological stimulus (e.g., lipopolysaccharide, hypoxia, balloon injury, tumor necrosis factor α, etc.) and its consequential modulation by CO. What has been less studied is the manner in which CO exposure alone modulates the molecular machinery of the cell so that a subsequent stress stimulus will elicit a homeostatic response as opposed to one that is chaotic and disordered. CO potentially interacts with other intracellular hemoprotein targets, although little is known about the functional significance of such interactions other then the known targets including mitochondrial oxidases, oxygen sensors, and nitric oxide synthases. The earliest response of a cell exposed to low concentrations of CO is clearly an increase in reactive oxygen species formation that we define as oxidative conditioning. This has important consequences for inflammation, proliferation, mitochondria biogenesis, and apoptosis. Within this review, we will highlight recent research on the molecular events underlying the physiologic effects of CO—which lead to cytoprotective conditioning.

Keywords

Reactive oxygen species Nitric oxide synthase Oxidative stress 

Notes

Acknowledgements

This work was supported by grants 10239 from the Austrian National Bank (MB) and NIH HL-071797 and HL-076167 (LEO). Martin Bilban is an Erwin Schroedinger fellow supported by the Austrian Science Fund (FWF Project J2626). We thank the Julie Henry Fund at the BIDMC Transplant Center for their support.

References

  1. 1.
    Maines M (1988) Heme oxygenase: function, multiplicity, regulatory mechanisms and clinical implications. FASEB J 2:2557–2568PubMedGoogle Scholar
  2. 2.
    Ryter S, Alam J, Choi A (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650PubMedCrossRefGoogle Scholar
  3. 3.
    McCoubrey W, Ewing J, Maines M (1992) Human heme oxygenase-2: characterization and expression of a full-length cDNA and evidence suggesting that the two HO-2 transcripts may differ by choice of polyadenylation signal. Arch Biochem Biophys 295:13–20PubMedCrossRefGoogle Scholar
  4. 4.
    McCoubrey W, Huang T, Maines M (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem 247:725–732PubMedCrossRefGoogle Scholar
  5. 5.
    Shibahara S, Muller R, Taguchi H (1987) Transcriptional control of rat heme oxygenase by heat shock. J Biol Chem 262:12889–12892PubMedGoogle Scholar
  6. 6.
    Duckers H, Boehm M, True A, Yet S, Park J, Clinton W, Lee M, Nable E (2001) Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 7:693–698PubMedCrossRefGoogle Scholar
  7. 7.
    Fujita T, Toda K, Karimova A, Yan S, Naka Y, Yet S, Pinsky D (2001) Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 7:598–604PubMedCrossRefGoogle Scholar
  8. 8.
    Soares M, Lin Y, Anrather J, Csizmadia E, Takigami K, Sato K, Grey S, Colvin R, Choi A, Poss K, Bach F (1998) Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med 4:1073–1077PubMedCrossRefGoogle Scholar
  9. 9.
    Lerner-Marmarosh N, Shen J, Torno M, Kravets A, Hu Z, Maines M (2005) Human biliverdin reductase: a member of the insulin receptor substrate family with serine/threonine/tyrosine kinase activity. Proc Natl Acad Sci USA 102:7109–14PubMedCrossRefGoogle Scholar
  10. 10.
    Wegiel B, Baty C, Csizmadia E, Scott J, Gallo D, Chin B, Zuckerbraun B, Alam J, Bach F, Otterbein L (2007) Cell surface biliverdin reductase regulates innate immunity in response to endotoxin. J Clin Invest (in press)Google Scholar
  11. 11.
    D’Amico G, Lam F, Hagen T, Moncada S (2006) Inhibition of cellular respiration by endogenously produced carbon monoxide. J Cell Sci 119:2291–2298PubMedCrossRefGoogle Scholar
  12. 12.
    Verma A, Hirsch D, Glatt C, Ronnett G, Snyder S (1993) Carbon monoxide: a putative neural messenger. Science 259:381–384PubMedCrossRefGoogle Scholar
  13. 13.
    Motterlini R, Mann BE, Johnson T, Clark J, Foresti R, Green C (2003) Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr Pharm Des 9:2525–2539PubMedCrossRefGoogle Scholar
  14. 14.
    Otterbein LE, Zuckerbraun B, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith R, Csizmadia E, Tyagi S, Akamatsu Y, Flavell R, Billiar T, Tzeng E, Bach F, Choi A, Soares M (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 9:183–190PubMedCrossRefGoogle Scholar
  15. 15.
    Sato K, Balla J, Otterbein L, Smith R, Brousar S, Lin Y, Csizmadia E, Sevigny J, Robson S, Vercelotti G, Choi A, Bach F, Soares M (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 166:4185–4194PubMedGoogle Scholar
  16. 16.
    Song R, Kubo M, Morse D, Zhou Z, Zhang X, Dauber J, Fabisiak J, Alber S, Watkins S, Zuckerbraun B, Otterbein L, Ning W, Oury R, Lee P, McCurry K, Choi A (2003) Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am J Pathol 163:231–242PubMedGoogle Scholar
  17. 17.
    Zuckerbraun B, Billiar T, Otterbein S, Kim P, Liu F, Choi A, Bach F, Otterbein LE (2003) Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. J Exp Med 198:1707–1716PubMedCrossRefGoogle Scholar
  18. 18.
    Zuckerbraun S, Chin B, Wegiel B, Billiar T, Csizmadia E, Rao J, Shimoda L, Ifedigbo E, Kanno S, Otterbein LE (2006) Carbon monoxide reverses established pulmonary hypertension. J Exp Med 203:2109–2119PubMedCrossRefGoogle Scholar
  19. 19.
    Wagener F, Volk H, Willis D, Abraham N, Soares M, Adema G, Figdor CG (2003) Different faces of the heme–heme oxygenase system in inflammation. Pharmacol Rev 55:551–571PubMedCrossRefGoogle Scholar
  20. 20.
    Kourembanas S (2002) Hypoxia and carbon monoxide in the vasculature. Antioxid Redox Signal 4:291–299PubMedCrossRefGoogle Scholar
  21. 21.
    Otterbein LE, Otterbein S, Ifedigbo E, Liu F, Morse D, Fearns C, Ulevitch R, Knickelbein R, Flavell R, Choi A (2003) MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury. Am J Pathol 163:2555–2563PubMedGoogle Scholar
  22. 22.
    Taille C, El-Benna J, Lanone S, Boczkowski J, Motterlini R (2005) Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 280:25350–25360PubMedCrossRefGoogle Scholar
  23. 23.
    Brouard S, Berberat P, Tobiasch E, Seldon M, Bach F, Soares M (2002) Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 277:17950–17961PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang X, Shan P, Alam J, Fu X, Lee P (2005) Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 280:8714–8721PubMedCrossRefGoogle Scholar
  25. 25.
    Otterbein LE, Bach F, Alam J, Soares M, Tao H, Wysk M, Davis R, Flavell R, Choi A (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang X, Shan P, Jiang G, Zhang S, Otterbein LE, Fu X, Lee P (2006) Endothelial STAT3 is essential for the protective effects of HO-1 in oxidant-induced lung injury. FASEB J 20:2156–2158PubMedCrossRefGoogle Scholar
  27. 27.
    Bilban M, Bach F, Otterbein S, Ifedigboe E, deCosta d’Avila J, Esterbauer H, Chin B, Usheva A, Robson S, Wagner O, Otterbein LE (2006) Carbon monoxide orchestrates a protective response through PPARgamma. Immunity 24:601–610PubMedCrossRefGoogle Scholar
  28. 28.
    Chin B, Jiang G, Wegiel B, Wang H, MacDonald T, Zhang X, Gallo D, Csizmadia E, Bach F, Lee P, Otterbein L (2007) Hypoxia-inducible factor 1{alpha} stabilization by carbon monoxide results in cytoprotective preconditioning. Proc Natl Acad Sci USA 104:5109–5114PubMedCrossRefGoogle Scholar
  29. 29.
    Sarady J, Otterbein S, Liu F, Otterbein LE, Choi A (2002) Carbon monoxide modulates endotoxin-induced production of granulocyte macrophage colony-stimulating factor in macrophages. Am J Respir Cell Mol Biol 27:739–745PubMedGoogle Scholar
  30. 30.
    Roberts P, Youn H, Kerby R (2004) CO-sensing mechanisms. Microbiol Mol Biol Rev 68:453–473PubMedCrossRefGoogle Scholar
  31. 31.
    Dioum EM, Rutter J, Tuckerman J, Gonzalez G, Gilles-Gonzalez M, McKnight S (2002) NPAS2: a gas-responsive transcription factor. Science 298:2385–2387PubMedCrossRefGoogle Scholar
  32. 32.
    Ryter S, Otterbein LE (2004) Carbon monoxide in biology and medicine. Bioessays 26:270–280PubMedCrossRefGoogle Scholar
  33. 33.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedCrossRefGoogle Scholar
  34. 34.
    Pittock S, Norby S, Grande J, Croatt A, Bren G, Badley A, Caplice N, Griffin M, Nath K (2005) MCP-1 is up-regulated in unstressed and stressed HO-1 knockout mice: Pathophysiologic correlates. Kidney Int 68:611–622PubMedCrossRefGoogle Scholar
  35. 35.
    Otterbein LE, Soares MP, Yamashita K, Bach FH (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 24:449–455PubMedCrossRefGoogle Scholar
  36. 36.
    Lee TS, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8:240–246PubMedCrossRefGoogle Scholar
  37. 37.
    Boczkowski J, Poderoso JJ, Motterlini R (2006) CO-metal interaction: vital signaling from a lethal gas. Trends Biochem Sci 31:614–621PubMedCrossRefGoogle Scholar
  38. 38.
    Zuckerbraun BS, Chin BY, Bilban M, deCosta d’Avila J, Rao J, Billiar T, Otterbein LE (2007) Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J 21:1099–106PubMedCrossRefGoogle Scholar
  39. 39.
    Veal EA, Day AM, Morgan BA (2007) Hydrogen Peroxide Sensing and Signaling. Mol Cell 26:1–14PubMedCrossRefGoogle Scholar
  40. 40.
    Geiszt M, Leto T (2004) The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 279:51715–51718PubMedCrossRefGoogle Scholar
  41. 41.
    Gulati P, Klohn P, Krug H, Gottlicher M, Markova B, Bohmer F, Herrlich P (2001) Redox regulation in mammalian signal transduction. IUBMB Life 52:25–28PubMedGoogle Scholar
  42. 42.
    Baines C, Goto M, Downey J (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29:207–216PubMedCrossRefGoogle Scholar
  43. 43.
    Ushio-Fukai M (2006) Localizing NADPH oxidase-derived ROS. Sci STKE 349:re8CrossRefGoogle Scholar
  44. 44.
    Varez-Maqueda M, El B, Alba G, Monteseirin J, Chacon P, Vega A, Martin-Nieto J, Bedoya F, Pintado E, Sobrino F (2004) 15-deoxy-delta 12,14-prostaglandin J2 induces heme oxygenase-1 gene expression in a reactive oxygen species-dependent manner in human lymphocytes. J Biol Chem 279:21929–21937CrossRefGoogle Scholar
  45. 45.
    Zhang J, Piantadosi CA (1992) Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 90:1193–1199PubMedCrossRefGoogle Scholar
  46. 46.
    Raha S, Robinson BH (2001) Mitochondria, oxygen free radicals, and apoptosis. Am J Med Genet 106:62–70PubMedCrossRefGoogle Scholar
  47. 47.
    Sablina A, Budanov A, Ilyinskaya G, Agapova L, Kravchenko J, Chumakov P (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313PubMedCrossRefGoogle Scholar
  48. 48.
    Bossis G, Melchior F (2006) SUMO: regulating the regulator. Cell Div 1:13PubMedCrossRefGoogle Scholar
  49. 49.
    Meng T, Hsu S, Tonks NK (2005) Development of a modified in-gel assay to identify protein tyrosine phosphatases that are oxidized and inactivated in vivo. Methods 35:28–36PubMedCrossRefGoogle Scholar
  50. 50.
    Tonks NK (2005) Redox redux: revisiting PTPs and the control of cell signaling. Cell 121:667–70PubMedCrossRefGoogle Scholar
  51. 51.
    Boveris A, Chance B (1973) The mitochondria generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716PubMedGoogle Scholar
  52. 52.
    Tsan M (2001) Superoxide dismutase and pulmonary oxygen toxicity: lessons from transgenic and knockout mice. Int J Mol Med 7:13–92 (Review)PubMedGoogle Scholar
  53. 53.
    Alonso R, Cardellach F, Lopez S, Casademont J, Miro O (2003) Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol Toxicol 93:142–146PubMedCrossRefGoogle Scholar
  54. 54.
    Brown D, Piantadosi A (1990) In vivo binding of carbon monoxide to cytochrome c oxidase in rat brain. J Appl Physiol 68:604–610PubMedGoogle Scholar
  55. 55.
    Hansen B, Nicholls P (1978) Control of respiration in proteoliposomes containing cytochrome aa3. II. Inhibition by carbon monoxide and azide. Biochim Biophys Acta 502:400–408PubMedCrossRefGoogle Scholar
  56. 56.
    Piantadosi CA (2002) Biological chemistry of carbon monoxide. Antioxid Redox Signal 4:259–270PubMedCrossRefGoogle Scholar
  57. 57.
    Stone J, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270PubMedCrossRefGoogle Scholar
  58. 58.
    Suliman H, Carraway M, Tatro L, Piantadosi C (2007) A new activating role for CO in cardiac mitochondrial biogenesis. J Cell Sci 120:299–308PubMedCrossRefGoogle Scholar
  59. 59.
    Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, Yan S, Stern D, Mackman N (2001) Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98:1429–1439PubMedCrossRefGoogle Scholar
  60. 60.
    Yan SF, Fujita T, Lu J, Okada K, Shan Z, Mackman N, Pinsky D, Stern D (2000) Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 6:1355–1361PubMedCrossRefGoogle Scholar
  61. 61.
    Mishra S, Fujita T, Lama V, Nam D, Liao H, Okada M, Minamoto K, Yoshikawa Y, Harada H, Pinsky D (2006) Carbon monoxide rescues ischemic lungs by interrupting MAPK-driven expression of early growth response 1 gene and its downstream target genes. Proc Natl Acad Sci USA 103:5191–5196PubMedCrossRefGoogle Scholar
  62. 62.
    Okada M, Yan S, Pinsky J (2002) Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activation suppresses ischemic induction of Egr-1 and its inflammatory gene targets. FASEB J 16:1861–1868PubMedCrossRefGoogle Scholar
  63. 63.
    Ricote M, Li A, Willson T, Kelly C, Glass C (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391:79–82PubMedCrossRefGoogle Scholar
  64. 64.
    Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86PubMedCrossRefGoogle Scholar
  65. 65.
    Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans R (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52PubMedCrossRefGoogle Scholar
  66. 66.
    Simonin MA, Bordji K, Boyault S, Bianchi A, Gouze E, Becuwe P, Dauca M, Netter P, Terlain B (2002) PPAR-gamma ligands modulate effects of LPS in stimulated rat synovial fibroblasts. Am J Physiol Cell Physiol 282:C125–C133PubMedGoogle Scholar
  67. 67.
    Theocharis S, Margeli A, Vielh P, Kouraklis G (2004) Peroxisome proliferator-activated receptor-gamma ligands as cell-cycle modulators. Cancer Treat Rev 30:545–554PubMedCrossRefGoogle Scholar
  68. 68.
    Cheng S, Afif H, Martel-Pelletier J, Pelletier J, Li X, Farrajota K, Lavigne M, Fahmi H (2004) Activation of peroxisome proliferator-activated receptor gamma inhibits interleukin-1beta-induced membrane-associated prostaglandin E2 synthase-1 expression in human synovial fibroblasts by interfering with Egr-1. J Biol Chem 279:22057–22065PubMedCrossRefGoogle Scholar
  69. 69.
    Kelly D, Campbell J, King T, Grant G, Jansson E, Coutts A, Pettersson S, Conway S (2004) Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5:104–112PubMedCrossRefGoogle Scholar
  70. 70.
    Woo CH, Massett MP, Shishido T, Itoh S, Ding B, McClain C, Che W, Vulapalli S, Yan C, Abe J (2006) ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. J Biol Chem 281:32164–32174PubMedCrossRefGoogle Scholar
  71. 71.
    Bacon A, Harris AL (2004) Hypoxia-inducible factors and hypoxic cell death in tumour physiology. Ann Med 36:530–539PubMedCrossRefGoogle Scholar
  72. 72.
    Massague J, Blain S, Lo R (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309PubMedCrossRefGoogle Scholar
  73. 73.
    Zhang D, Gutterman D (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292(5):H2023–H2031PubMedCrossRefGoogle Scholar
  74. 74.
    Li J, Shah A (2004) Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 287:R1014–R1030PubMedGoogle Scholar
  75. 75.
    Mueller C, Laude K, McNally J, Harrison D (2005) ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25:274–278PubMedCrossRefGoogle Scholar
  76. 76.
    Watanabe N, Zmijewski JW, Takabe W, Umezu-Goto M, Le Goffe C, Sekine A, Landar A, Watanabe A, Aoki J, Arai H, Kodama T, Murphy M, Kalyanaraman R, Darley-Usmar V, Noguchi N (2006) Activation of mitogen-activated protein kinases by lysophosphatidylcholine-induced mitochondrial reactive oxygen species generation in endothelial cells. Am J Pathol 168:1737–1748PubMedCrossRefGoogle Scholar
  77. 77.
    Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci USA 103:5379–5384PubMedCrossRefGoogle Scholar
  78. 78.
    Dulak J, Loboda A, Zagorska A, Jozkowicz A (2004) Complex role of heme oxygenase-1 in angiogenesis. Antioxid Redox Signal 6:858–866PubMedGoogle Scholar
  79. 79.
    Wang X, Wang Y, Kim H, Ryter S, Choi A (2007) Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. J Biol Chem 282:1718–1726PubMedCrossRefGoogle Scholar
  80. 80.
    Fujimoto H, Ohno M, Ayabe S, Kobayashi H, Ishizaka N, Kimura H, Yoshida K, Nagai R (2004) Carbon monoxide protects against cardiac ischemia–reperfusion injury in vivo via MAPK and Akt–eNOS pathways. Arterioscler Thromb Vasc Biol. 24:1848–1853PubMedCrossRefGoogle Scholar
  81. 81.
    Xi Q, Cheranov S, Jaggar J (2005) Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2 + sparks. Circ Res 97:354–362PubMedCrossRefGoogle Scholar
  82. 82.
    Williams SE, Wootton P, Mason H, Bould J, Iles D, Riccardi D, Peers C, Kemp P (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306:2093–2097PubMedCrossRefGoogle Scholar
  83. 83.
    Wang X, Yin C, Xi L, Kukreja R (2004) Opening of Ca2 + -activated K + channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. Am J Physiol Heart Circ Physiol 287:H2070–H2077PubMedCrossRefGoogle Scholar
  84. 84.
    Machida K, Cheng KT, Lai C, Jeng K, Suung V, Lai M (2006) Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J Virol 80:7199–7207PubMedCrossRefGoogle Scholar
  85. 85.
    Nakahira K, Kim HP, Geng X, Nakao A, Wang X, Murase N, Drain P, Wang X, Sasidar M, Nabel E, Takahashi T, Lukacs N, Ryter S, Morita K, Choi A (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203:2377–2389PubMedCrossRefGoogle Scholar
  86. 86.
    Otterbein LE, May A, Chin BY (2005) Carbon monoxide increases macrophage bacterial clearance through Toll-like receptor (TLR)4 expression. Cell Mol Biol (Noisy-le-grand) 51:433–440Google Scholar
  87. 87.
    Reinking J, Lam M, Pardee K (2005) The Drosophila nuclear receptor e75 contains heme and is gas responsive. Cell 122:195–207PubMedCrossRefGoogle Scholar
  88. 88.
    Boehning D, Snyder SH (2002) Circadian rhythms. Carbon monoxide and clocks. Science 298:2339–2340PubMedCrossRefGoogle Scholar
  89. 89.
    Drummond G, Cai H, Davis M, Ramasamy S, Harrison DG (2000) Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res 86:347–54PubMedGoogle Scholar
  90. 90.
    Srisook K, Kim C, Cha YN (2005) Cytotoxic and cytoprotective actions of O2- and NO (ONOO) are determined both by cellular GSH level and HO activity in macrophages. Methods Enzymol 396:414–424PubMedCrossRefGoogle Scholar
  91. 91.
    Motterlini R, Green CJ, Foresti R (2002) Regulation of heme oxygenase-1 by redox signals involving nitric oxide. Antioxid Redox Signal 4:615–624PubMedCrossRefGoogle Scholar
  92. 92.
    Maines MD (2005) New insights into biliverdin reductase functions: linking heme metabolism to cell signaling. Physiology 20:382–389PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Martin Bilban
    • 1
    • 2
    • 3
  • Arvand Haschemi
    • 1
    • 2
  • Barbara Wegiel
    • 1
  • Beek Y. Chin
    • 1
  • Oswald Wagner
    • 1
    • 2
    • 3
  • Leo E. Otterbein
    • 1
    • 4
  1. 1.Department of Surgery, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  2. 2.Department of Laboratory MedicineMedical University of ViennaViennaAustria
  3. 3.Ludwig Boltzmann Institute for Clinical and Experimental OncologyViennaAustria
  4. 4.Transplant Research Center, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations