Journal of Molecular Medicine

, Volume 86, Issue 3, pp 303–311 | Cite as

Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans

  • V. Saroja Voruganti
  • Juan C. Lopez-Alvarenga
  • Subrata D. Nath
  • David L. Rainwater
  • Richard Bauer
  • Shelley A. Cole
  • Jean W. MacCluer
  • John Blangero
  • Anthony G. Comuzzie
Original Article

Abstract

Insulin resistance is a major biochemical defect underlying the pathogenesis of cardiovascular disease (CVD). Mexican-Americans are known to have an unfavorable cardiovascular profile. Thus, the aim of this study was to investigate the genetic effect on variation in HOMA-IR and to evaluate its genetic correlations with other phenotypes related to risk of CVD in Mexican-Americans. The homeostatic model assessment method (HOMA-IR) is one of several approaches that are used to measure insulin resistance and was used here to generate a quantitative phenotype for genetic analysis. For 644 adults who had participated in the San Antonio Family Heart Study (SAFHS), estimates of genetic contribution were computed using a variance components method implemented in SOLAR. Traits that exhibited significant heritabilities were body mass index (BMI) (h2 = 0.43), waist circumference (h2 = 0.48), systolic blood pressure (h2 = 0.30), diastolic blood pressure (h2 = 0.21), pulse pressure (h2 = 0.32), triglycerides (h2 = 0.51), LDL cholesterol (h2 = 0.31), HDL cholesterol (h2 = 0.24), C-reactive protein (h2 = 0.17), and HOMA-IR (h2 = 0.33). A genome-wide scan for HOMA-IR revealed significant evidence of linkage on chromosome 12q24 (close to PAH (phenylalanine hydroxylase), LOD = 3.01, p < 0.001). Bivariate analyses demonstrated significant genetic correlations (p < 0.05) of HOMA-IR with BMI (ρG = 0.36), waist circumference (ρG = 0.47), pulse pressure (ρG = 0.39), and HDL cholesterol (ρG = -0.18). Identification of significant linkage for HOMA-IR on chromosome 12q replicates previous family-based studies reporting linkage of phenotypes associated with type 2 diabetes in the same chromosomal region. Significant genetic correlations between HOMA-IR and phenotypes related to CVD risk factors suggest that a common set of gene(s) influence the regulation of these phenotypes.

Keywords

Insulin resistance Variance component approach Genetic correlations 

Notes

Acknowledgements:

We wish to thank all participants of the San Antonio Family Heart Study for their cooperation and generous participation. This study was supported by PO1 HL4522 from NHLBI and MH59490 from NIH.

References

  1. 1.
    Ferrannini E (2006) Is insulin resistance the cause of the metabolic syndrome? Ann Med 38:42–51PubMedCrossRefGoogle Scholar
  2. 2.
    Schinner S, Scherbaum WA, Bornstein SR, Barthel A (2005) Molecular mechanisms of insulin resistance. Diabet Med 22:674–682PubMedCrossRefGoogle Scholar
  3. 3.
    Hong Y, Despres JP, Rice T, Nadeau A, Province MA, Gagnon J et al (2000) Evidence of pleiotropic loci for fasting insulin, total fat mass and abdominal visceral fat in a sedentary population: The HERITAGE family study. Obes Res 8:151–159PubMedGoogle Scholar
  4. 4.
    Henkin L, Bergman RN, Bowden DW, Ellsworth DL, Haffner SM, Langefeld CD et al (2003) Genetic Epidemiology of insulin resistance and visceral adiposity: the IRAS family study design and methods. Am J Epidemiol 13:211–217CrossRefGoogle Scholar
  5. 5.
    Ginsberg HN (2000) Insulin resistance and cardiovascular disease. J Clin Invest 106:453–458PubMedCrossRefGoogle Scholar
  6. 6.
    Krebs M, Roden M (2005) Molecular mechanism of lipid-induced insulin resistance in muscle, liver and vasculature. Diab Obes Metab 7:621–632CrossRefGoogle Scholar
  7. 7.
    Nigro J, Osman N, Dart AM, Little PJ (2006) Insulin resistance and atherosclerosis. Endocrine Reviews 27:242–259PubMedCrossRefGoogle Scholar
  8. 8.
    Rader DJ (2007) Effect of insulin resistance, dyslipidemia and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med 120:S12–S18PubMedCrossRefGoogle Scholar
  9. 9.
    Haffner SM, Stern MP, Hazuda HP, Rosenthal M, Knapp JA, Malina RM (1986) Role of obesity and fat distribution in non-insulin-dependent diabetes mellitus in Mexican Americans and non-Hispanic whites. Diabetes Care 9:153–161PubMedCrossRefGoogle Scholar
  10. 10.
    Duggirala RN, Blangero J, Almasy A, Arya R, Dyer TD, Williams KL et al (2001) A major locus for fasting insulin concentrations and insulin resistance on chromosome 6q with strong pleiotropic effects on obesity-related phenotypes in nondiabetic Mexican-Americans. Am J Hum Genet 68:1149–1164PubMedCrossRefGoogle Scholar
  11. 11.
    Swenson CJ, Trepka MJ, Rewers MJ, Scarbro S, Hiatt WR, Hamman RF (2002) Cardiovascular disease mortality in Hispanics and non-Hispanic Whites. Am J Epidemiol 156:919–928PubMedCrossRefGoogle Scholar
  12. 12.
    Lorenzo C, Williams K, Hunt KJ, Haffner SM (2006) Trend in the prevalence of the metabolic syndrome and its impact on cardiovascular disease incidence: the San Antonio Heart Study. Diabetes Care 29:625–630PubMedCrossRefGoogle Scholar
  13. 13.
    Stern MP, Rosenthal M, Haffner SM, Hazuda HP, Franco LJ (1984) Sex difference in the effects of sociocultural status on diabetes and cardiovascular risk factors in Mexican Americans. The San Antonio Heart Study. Am J Epidemiol 120:834–851PubMedGoogle Scholar
  14. 14.
    Mitchell BD, Stern MP, Haffner SM, Hazuda HP, Patterson JK (1990) Risk factors for cardiovascular mortality in Mexican-Americans and non-Hispanic Whites: The San Antonio Heart Study. Am J Epidemiol 131:423–433PubMedGoogle Scholar
  15. 15.
    Mitchell BD, Kammerer CM, Mahaney MC, Blangero J, Comuzzie AG, Atwood LD et al (1996) Genetic Analysis of the IRS. Pleiotropic effects of genes influencing insulin levels on lipoprotein and obesity measures. Arterioscler Thromb Vasc Biol 16:281–288PubMedGoogle Scholar
  16. 16.
    Comuzzie AG, Mitchell BD, Cole SA, Martin LJ, Hsueh WC, Rainwater DL et al (2003) The Genetics of obesity in Mexican-Americans: the evidence from genome scanning efforts in the San Antonio Family Heart Study. Hum Biol 75:635–646PubMedCrossRefGoogle Scholar
  17. 17.
    Comuzzie AG, Blangero J, Mahaney MC, Haffner SM, Mitchell BD, Stern MP, MacCluer JW (1996) Genetics and environmental correlations among hormone levels and measures of body fat accumulation and topography. J Clin Endocrinol Metab 81:597–600PubMedCrossRefGoogle Scholar
  18. 18.
    Matthews DR, Hosker JP, Rudensky AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta cell function from fasting glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  19. 19.
    Rutter MK, Meigs JB, Sullivan LM, D’Agostino RB Sr, Wilson PW (2005) Insulin resistance, the metabolic syndrome, and incident cardiovascular events in the Framingham Offspring study. Diabetes 54:3252–3257PubMedCrossRefGoogle Scholar
  20. 20.
    MacCluer JW, Stern MP, Almasy L, Atwood LA, Blangero J, Comuzzie AG et al (1999) Genetics of atherosclerosis risk factors in Mexican Americans. Nutr Rev 57:S59–S65PubMedCrossRefGoogle Scholar
  21. 21.
    Franklin SS, Khan SA, Wong ND, Larson MG, Levy D (1999) Is pulse pressure useful in predicting risk for coronary heart disease? The Framingham Heart Study. Circulation 100:354–360PubMedGoogle Scholar
  22. 22.
    Miller WG, Waymack PP, Anderson FP, Ethridge SF, Jayne EC (2002) Performance of four homogenous direct methods for LDL-cholesterol. Clin Chem 48:1812–1814Google Scholar
  23. 23.
    Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211PubMedCrossRefGoogle Scholar
  24. 24.
    Hopper JL, Mathews JD (1982) Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet 46:373-383PubMedCrossRefGoogle Scholar
  25. 25.
    Blangero J, Almasy L (1997) Multipoint oligogenic linkage analysis of quantitative traits. Genet Epidemiol 14:959–964PubMedCrossRefGoogle Scholar
  26. 26.
    Self SG, Liang KY (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610CrossRefGoogle Scholar
  27. 27.
    Almasy L, Dyer TD, Blangero J (1997) Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages. Genet Epidemiol 14:953–958PubMedCrossRefGoogle Scholar
  28. 28.
    Bach I, Galcheva-Gargova Z, Mattei M-G, Simon-Chazottes D, Guenet J-L, Cereghini S et al (1990) Cloning of human hepatic nuclear factor 1 (HNF1) and chromosomal localization of its gene in man and mouse. Genomics 8:155–164PubMedCrossRefGoogle Scholar
  29. 29.
    Tonooka N, Tomura H, Takahashi Y, Onigata K, Kikuchi N, Horikawa Y et al (2002) High frequency of mutations in the HNF-1α gene (TCF1) in non-obese patients with diabetes of youth in Japanese and identification of a case of digenic inheritance. Diabetologia 45:1709–1712PubMedCrossRefGoogle Scholar
  30. 30.
    Morton CC, Byers MG, Nakai H, Bell GI, Shows TB (1986) Human genes for insulin-like growth factors I and II and epidermal growth factor are located on 12q22–24.1, 11p15 and 4q25–27. Cytogenet Cell Genet 41:245–249PubMedGoogle Scholar
  31. 31.
    Yang-Feng TL, Brissende JE, Ullrich A, Francke U (1985) Sub-regional localization of human genes for insulin-like growth factors I (IGF1) and II (IGF2) by in situ hybridization. Cytogenet Cell Genet 40:782Google Scholar
  32. 32.
    Sun G, Gagnon J, Chagnon YC, Perusse L, Despres JP, Leon AS et al (1999) Association and linkage between an insulin-like growth factor-1 gene polymorphism and fat free mass in the HERITAGE family study. Int J Obes Relat Metab Disord 23(9):929–935PubMedCrossRefGoogle Scholar
  33. 33.
    Cao G, Garcia CK, Wyne KL, Schultz RA, Parker KL, Hobbs HH (1997) Structure and localization of the human gene encoding SR-BI/CLA-1: evidence for transcriptional control by steroidogenic factor 1. J Biol Chem 272:33068–33076PubMedCrossRefGoogle Scholar
  34. 34.
    Ullrich CK, Widmer J, Park JP, Mohandas TK, Witters LA (1997) Assignment of acetyl-CoA carboxylase-beta (ACACB) to human chromosome band 12q24.1 by in situ hybridization. Cytogenet cell genet 77:176–177PubMedGoogle Scholar
  35. 35.
    Pedeutour F, Szpirer C, Nahon JL (1994) Assignment of the human pro-melanin-concentrating hormone gene (PMCH) to chromosome 12q23–24 and two variant genes (PMCHL1 and PMCHL2) to chromosome 5p14 and 5q12-q13. Genomics 19:31–37PubMedCrossRefGoogle Scholar
  36. 36.
    Mills GW, Avery PJ, McCarthy MI, Hattersley AT, Levy JC, Hitman GA et al (2004) Heritability estimates for beta cell function and features of the insulin resistance syndrome in UK families with an increased susceptibility to type 2 diabetes. Diabetologia. 47:732–738PubMedCrossRefGoogle Scholar
  37. 37.
    An P, Freedman BI, Hanis CL, Chen YI, Weder AB, Schork NJ et al (2005) Genome-wide linkage scans for fasting glucose, insulin, and insulin resistance in the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Diabetes. 54:909–914PubMedCrossRefGoogle Scholar
  38. 38.
    Lehto M, Tuomi T, Mahtani MM, Widen E, Forsblom C, Sarelin L, Gullstrom M et al (1997) Characterization of the MODY3 phenotype. J Clin Invest 99:582–591PubMedGoogle Scholar
  39. 39.
    Shaw JTE, Lovelock PK, Kesting JB, Cardinal J, Duffy D, Wainwright B, Cameron DP (1998) Novel susceptibility gene for late-onset NIDDM is localized to human chromosome 12q. Diabetes 47:1793–1796PubMedCrossRefGoogle Scholar
  40. 40.
    Lindgren CM, Mahtani MM, Widen E, McCarthy MI, Daly MJ, Kirby A et al (2002) Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: The Botnia study. Am J Hum Genet 70:509–516PubMedCrossRefGoogle Scholar
  41. 41.
    Bowden DW, Sale M, Howard TD, Qadri A, Spray BJ, Rothschild CB et al (1997) Linkage of genetic markers on human chromosome 20 and 12 to NIDDM in Caucasian sib pairs with a history of diabetic nephropathy. Diabetes 46:882–886PubMedCrossRefGoogle Scholar
  42. 42.
    Rich SS, Bowden DW, Haffner SM, Norris JM, Saad MF, Mitchell BD et al (2004) Identification of quantitative trait loci for glucose homeostasis. The Insulin Resistance Atherosclerosis study (IRAS). Family study. Diabetes 53:1866–1875Google Scholar
  43. 43.
    Ehm MG, Karnoub MC, Sakul H, Gottschalk K, Holt DC, Weber JL et al (2000) Genomewide search for type 2 diabetes susceptibility genes in four American populations. Am J Hum Genet 66:1871–1881PubMedCrossRefGoogle Scholar
  44. 44.
    Van Tilburg JH, Sandkuijl LA, Franke L, Strengman E, Pearson PL, van Haeften TW et al (2003) Genome-wide screen in obese pedigrees with type2 diabetes mellitus from a defined Dutch population. Eur J Clin Invest 33:1070–1074PubMedCrossRefGoogle Scholar
  45. 45.
    Lewis CE, North KE, Arnett D, Borecki IB, Coon H, Ellison RC et al (2005) Sex-specific findings from a genome-wide linkage analysis of human fatness in non-Hispanic whites and African-Americans: The HyperGEN study. Intl J Obes 29:639–649CrossRefGoogle Scholar
  46. 46.
    Cai G, Cole SA, Freeland-Graves JH, MacCluer JW, Blangero J, Comuzzie AG (2004) Genome-wide scans reveal quantitative trait loci on 8p and 13q related to insulin action and glucose metabolism: The San Antonio Family Heart Study. Diabetes 53:1369–1374PubMedCrossRefGoogle Scholar
  47. 47.
    Hanley AJG, Williams K, Stern MP, Haffner SM (2002) Homeostatic model assessment of insulin resistance in relation to the incidence of cardiovascular disease. Diabetes Care 25:1177–1184PubMedCrossRefGoogle Scholar
  48. 48.
    Sundquist J, Winkleby MA (1999) Cardiovascular risk factors in Mexican-American adults: a transcultural analysis of NHANES III, 1988–1994. Am J Public Health 89:723–730PubMedCrossRefGoogle Scholar
  49. 49.
    Bonora E, Kiechl S, Willeit J, Oberhollenzer F, Egger G, Meigs JB et al (2007) Insulin resistance as estimated by homeostasis model assessment predicts incident symptomatic cardiovascular disease in Caucasian subjects from the general population: The Bruneck study. Diabetes Care 30:318–324PubMedCrossRefGoogle Scholar
  50. 50.
    Jeppesen J, Hansen TW, Rasmussen S, Ibsen H, Torp-Pedersen C, Madsbad S (2007) Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease: a population-based study. J Am Coll Cardiol 49:2112–2119PubMedCrossRefGoogle Scholar
  51. 51.
    Rader DJ (2007) Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med 120:S12–S18PubMedCrossRefGoogle Scholar
  52. 52.
    Bertoni AG, Wong ND, Shea S, Ma S, Liu K, Srikanthan P et al (2007) Insulin resistance, Metabolic syndrome and subclinical atherosclerosis: The Multi-Ethnic Study of Atherosclerosis (MESA) Diabetes Care 30:2951–2956PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • V. Saroja Voruganti
    • 1
    • 3
  • Juan C. Lopez-Alvarenga
    • 1
  • Subrata D. Nath
    • 2
  • David L. Rainwater
    • 1
  • Richard Bauer
    • 2
  • Shelley A. Cole
    • 1
  • Jean W. MacCluer
    • 1
  • John Blangero
    • 1
  • Anthony G. Comuzzie
    • 1
  1. 1.Southwest Foundation for Biomedical ResearchSan AntonioUSA
  2. 2.University of Texas Health Science Center at San AntonioSan AntonioUSA
  3. 3.Department of GeneticsSouthwest Foundation for Biomedical ResearchSan AntonioUSA

Personalised recommendations