Journal of Molecular Medicine

, Volume 85, Issue 11, pp 1239–1251 | Cite as

Cholinergic status modulations in human volunteers under acute inflammation

  • Keren Ofek
  • Karen S. Krabbe
  • Tama Evron
  • Meir Debecco
  • Anders R. Nielsen
  • Helle Brunnsgaad
  • Raz Yirmiya
  • Hermona Soreq
  • Bente K. Pedersen
Original Article


Cholinergic Status, the total soluble circulation capacity for acetylcholine hydrolysis, was tested for putative involvement in individual variabilities of the recruitment of immune cells in response to endotoxin challenge. Young (average age 26) and elderly (average age 70) volunteers injected with either Escherichia coli endotoxin or saline on two different occasions were first designated Enhancers and Suppressors if they showed increase or decrease, respectively, in plasma acetylcholinesterase (AChE) activity 1.5 h after endotoxin administration compared to saline. Enhancers showed significant co-increases in plasma butyrylcholinesterase (BChE) and paraoxonase (PON1) activities, accompanied by rapid recovery of lymphocyte counts. Young Enhancers alone showed pronounced post-exposure increases in the pro-inflammatory cytokine interleukin-6 (IL-6), and upregulation of the normally rare, stress-induced AChE-R variant, suggesting age-associated exhaustion of the cholinergic effects on recruiting innate immune reactions to endotoxin challenge. Importantly, IL-6 injected to young volunteers or administered in vitro to primary mononuclear blood cells caused upregulation of AChE, but not BChE or PON1, excluding it from being the sole cause for this extended response. Interestingly, Suppressors but not Enhancers showed improved post-exposure working memory performance, indicating that limited cholinergic reactions may be beneficial for cognition. Our findings establish Cholinergic Status modulations as early facilitators and predictors of individual variabilities in the peripheral response to infection.


Human Cytokines Inflammation Acetylcholinesterase Butyrylcholinesterase Paraoxonase 



The authors thank Dr. Tsafrir Mor of the University of Arizona for a highly purified recombinant human AChE-R.

This work was supported by the Deutsches Krebsforschungszentrum (DKFZ), the Israel Ministry of Science (MOS), BSF-US-Israel Binational Science Fund (2003028-01) and the Israeli Ministry of Commerce (NOPHAR) to H.S. The Centre of Inflammation and Metabolism (supported by a grant from the Danish National Research Foundation—DG 02-512-555); The Copenhagen Muscle Research Centre (supported by grants from The University of Copenhagen, The Faculties of Science and of Health Sciences at this university); The Copenhagen Hospital Corporation, The Danish National Research Foundation (Grant 504-14), the Commission of the European Communities (contract no. LSHM-CT-2004-005272 EXGENESIS).


  1. 1.
    Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859PubMedCrossRefGoogle Scholar
  2. 2.
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462PubMedCrossRefGoogle Scholar
  3. 3.
    Loewenstein-Lichtenstein Y, Schwarz M, Glick D, Norgaard-Pedersen B, Zakut H, Soreq H (1995) Genetic predisposition to adverse consequences of anti-cholinesterases in ‘atypical’ BCHE carriers. Nat Med 1:1082–1085PubMedCrossRefGoogle Scholar
  4. 4.
    Sklan EH, Lowenthal A, Korner M, Ritov Y, Landers DM, Rankinen T, Bouchard C, Leon AS, Rice T, Rao DC, Wilmore JH, Skinner JS, Soreq H (2004) Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in Health, Risk Factors, Exercise Training, and Genetics study. Proc Natl Acad Sci USA 101:5512–5517PubMedCrossRefGoogle Scholar
  5. 5.
    Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39:687–699PubMedCrossRefGoogle Scholar
  6. 6.
    Besedovsky HO, del Rey A (2000) The cytokine-HPA axis feed-back circuit. Z Rheumatol 59(Suppl 2):II/26–30Google Scholar
  7. 7.
    Chrousos GP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332:1351–1362PubMedCrossRefGoogle Scholar
  8. 8.
    Tsigos C, Kyrou I, Chrousos GP, Papanicolaou DA (1998) Prolonged suppression of corticosteroid-binding globulin by recombinant human interleukin-6 in man. J Clin Endocrinol Metab 83:3379PubMedCrossRefGoogle Scholar
  9. 9.
    Meshorer E, Toiber D, Zurel D, Sahly I, Dori A, Cagnano E, Schreiber L, Grisaru D, Tronche F, Soreq H (2004) Combinatorial complexity of 5′ alternative acetylcholinesterase transcripts and protein products. J Biol Chem 279:29740–29751PubMedCrossRefGoogle Scholar
  10. 10.
    Reale M, Iarlori C, Gambi F, Feliciani C, Salone A, Toma L, DeLuca G, Salvatore M, Conti P, Gambi D (2004) Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines. J Neuroimmunol 148:162–171PubMedCrossRefGoogle Scholar
  11. 11.
    Pick M, Perry C, Lapidot T, Guimaraes-Sternberg C, Naparstek, V. Deutsch, SoreqH (2006) Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis. Blood 107:3397–3406PubMedCrossRefGoogle Scholar
  12. 12.
    Meshorer E, Soreq H (2006) Virtues and woes of AChE alternative splicing in stress-related neuropathologies. Trends Neurosci 29:216–224PubMedCrossRefGoogle Scholar
  13. 13.
    Grisaru D, Pick M, Perry C, Sklan EH, Almog R, Goldberg I, Naparstek E, Lessing JB, Soreq H, Deutsch V (2006) Hydrolytic and nonenzymatic functions of acetylcholinesterase comodulate hemopoietic stress responses. J Immunol 176:27–35PubMedGoogle Scholar
  14. 14.
    Evron T, Moyal-Segal LB, Lamm N, Geffen A, Soreq H (2005) RNA-targeted suppression of stress-induced allostasis in primate spinal cord neurons. Neurodegener Dis 2:16–27PubMedCrossRefGoogle Scholar
  15. 15.
    Pollak Y, Gilboa A, Ben-Menachem O, Ben-Hur T, Soreq H, Yirmiya R (2005) Acetylcholinesterase inhibitors reduce brain and blood interleukin-1beta production. Ann Neurol 57:741–745PubMedCrossRefGoogle Scholar
  16. 16.
    Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WS (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20:149–155PubMedGoogle Scholar
  17. 17.
    Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3:453–462PubMedCrossRefGoogle Scholar
  18. 18.
    Goshen I, Yirmiya R (2007) The role of proinflammatory cytokines in memory processes and neural plasticity. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmacher T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452PubMedCrossRefGoogle Scholar
  20. 20.
    Meyers CA (1999) Mood and cognitive disorders in cancer patients receiving cytokine therapy. Adv Exp Med Biol 461:75–81PubMedGoogle Scholar
  21. 21.
    Cohen O, Reichenberg A, Perry C, Ginzberg D, Pollmacher T, Soreq H, Yirmiya R (2003) Endotoxin-induced changes in human working and declarative memory associate with cleavage of plasma “readthrough” acetylcholinesterase. J Mol Neurosci 21:199–212PubMedCrossRefGoogle Scholar
  22. 22.
    Willard LB, Hauss-Wegrzyniak B, Wenk GL (1999) Pathological and biochemical consequences of acute and chronic neuroinflammation within the basal forebrain cholinergic system of rats. Neuroscience 88:193–200PubMedCrossRefGoogle Scholar
  23. 23.
    Kaufer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–377PubMedCrossRefGoogle Scholar
  24. 24.
    Pepeu G, Giovannini MG (2004) Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 11:21–27PubMedCrossRefGoogle Scholar
  25. 25.
    Weinstock M (1995) The pharmacotherapy of Alzheimer’s disease based on the cholinergic hypothesis: an update. Neurodegeneration 4:349–356PubMedCrossRefGoogle Scholar
  26. 26.
    Wechsler D (1997) Wechsler Adult Intelligence Scale. The Psychological Corporation, San AntonioGoogle Scholar
  27. 27.
    Furlong CE, Richter RJ, Seidel SL, Costa LG, Motulsky AG (1989) Spectrophotometric assays for the enzymatic hydrolysis of the active metabolites of chlorpyrifos and parathion by plasma paraoxonase/arylesterase. Anal Biochem 180:242–247PubMedCrossRefGoogle Scholar
  28. 28.
    Ellman GL, Courtney KD, Andres Jr. V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95PubMedCrossRefGoogle Scholar
  29. 29.
    Sternfeld M, Shoham S, Klein O, Flores-Flores C, Evron T, Idelson GH, Kitsberg D, Patrick JW, Soreq H (2000) Excess “read-through” acetylcholinesterase attenuates but the “synaptic” variant intensifies neurodeterioration correlates. Proc Natl Acad Sci USA 97:8647–8652PubMedCrossRefGoogle Scholar
  30. 30.
    Evron T, Geyer BC, Cherni I, Muralidharan M, Fletcher SP, Soreq H, Mor TS (2007) Plant-derived human acetylcholinesterase-R provides protection from lethal organophosphate poisoning and its chronic aftermath. FASEB J (in press).DOI 10.1096/fj.07-8112com
  31. 31.
    Chatonnet A, Lockridge O (1989) Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J 260:625–634PubMedGoogle Scholar
  32. 32.
    Lauw FN, ten Hove T, Dekkers PE, de Jonge E, van Deventer SJ, van Der Poll T (2000) Reduced Th1, but not Th2, cytokine production by lymphocytes after in vivo exposure of healthy subjects to endotoxin. Infect Immun 68:1014–1018PubMedCrossRefGoogle Scholar
  33. 33.
    Blanque R, Meakin C, Millet S, Gardner CR (1998) Selective enhancement of LPS-induced serum TNF-alpha production by carrageenan pretreatment in mice. Gen Pharmacol 31:301–306PubMedCrossRefGoogle Scholar
  34. 34.
    Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN (1998) Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Invest 101:1581–1590PubMedCrossRefGoogle Scholar
  35. 35.
    Akira S, Kishimoto T (1992) IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol Rev 127:25–50PubMedCrossRefGoogle Scholar
  36. 36.
    Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S, Nishio Y, Nakajima T, Hirano T, Kishimoto T (1990) A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J 9:1897–1906PubMedGoogle Scholar
  37. 37.
    Shapira M, Tur-Kaspa I, Bosgraaf L, Livni N, Grant AD, Grisaru D, Korner M, Ebstein RP, Soreq H (2000) A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet 9:1273–1281PubMedCrossRefGoogle Scholar
  38. 38.
    Saykin AJ, Wishart HA, Rabin LA, Flashman LA, McHugh TL, Mamourian AC, Santulli RB (2004) Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain 127:1574–1583PubMedCrossRefGoogle Scholar
  39. 39.
    Chelly J, Khelfaoui M, Francis F, Cherif B, Bienvenu T (2006) Genetics and pathophysiology of mental retardation. Eur J Hum Genet 14:701–713PubMedCrossRefGoogle Scholar
  40. 40.
    Reiche EM, Morimoto HK, Nunes SM (2005) Stress and depression-induced immune dysfunction: implications for the development and progression of cancer. Int Rev Psychiatry 17:515–527PubMedCrossRefGoogle Scholar
  41. 41.
    Feingold KR, Memon RA, Moser AH, Grunfeld C (1998) Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis 139:307–315PubMedCrossRefGoogle Scholar
  42. 42.
    Van Lenten BJ, Wagner AC, Navab M, Fogelman AM (2001) Oxidized phospholipids induce changes in hepatic paraoxonase and ApoJ but not monocyte chemoattractant protein-1 via interleukin-6. J Biol Chem 276:1923–1929PubMedCrossRefGoogle Scholar
  43. 43.
    Mike A, Castro NG, Albuquerque EX (2000) Choline and acetylcholine have similar kinetic properties of activation and desensitization on the alpha7 nicotinic receptors in rat hippocampal neurons. Brain Res 882:155–168PubMedCrossRefGoogle Scholar
  44. 44.
    Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9:125–134PubMedGoogle Scholar
  45. 45.
    Krabbe KS, Reichenberg A, Yirmiya R, Smed A, Pedersen BK, Bruunsgaard H (2005) Low-dose endotoxemia and human neuropsychological functions. Brain Behav Immun 19:453–460PubMedCrossRefGoogle Scholar
  46. 46.
    Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161–167PubMedCrossRefGoogle Scholar
  47. 47.
    Capuron L, Ravaud A, Dantzer R (2001). Timing and specificity of the cognitive changes induced by interleukin-2 and interferon-alpha treatments in cancer patients. Psychosom Med 63:376–386PubMedGoogle Scholar
  48. 48.
    Warburton EC, Koder T, Cho K, Massey PV, Duguid G, Barker GR, Aggleton JP, Bashir ZI, Brown MW (2003) Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38:987–996PubMedCrossRefGoogle Scholar
  49. 49.
    Gilboa-Geffen A, Lacoste PP, Soreq L, Cizeron-Clairac G, Le Panse R, Truffault F, Shaked I, Soreq H, Berrih-Aknin S (2007) The thymic theme of acetylcholinesterase splice variants in myasthenia gravis. Blood 109:4383–4391PubMedCrossRefGoogle Scholar
  50. 50.
    Darreh-Shori T, Hellstrom-Lindahl E, Flores-Flores C, Guan ZZ, Soreq H, Nordberg A (2004) Long-lasting acetylcholinesterase splice variations in anticholinesterase-treated Alzheimer’s disease patients. J Neurochem 88:1102–1113PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Keren Ofek
    • 1
  • Karen S. Krabbe
    • 2
  • Tama Evron
    • 1
  • Meir Debecco
    • 1
  • Anders R. Nielsen
    • 2
  • Helle Brunnsgaad
    • 2
  • Raz Yirmiya
    • 3
  • Hermona Soreq
    • 1
  • Bente K. Pedersen
    • 2
  1. 1.The Institute of Life sciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.The Centre of Inflammation and Metabolism, Department of Infectious Diseases and CMRC, Rigshospitalet, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Psychology and the Eric Roland Center for Neurodegenerative DiseasesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations