Journal of Molecular Medicine

, Volume 85, Issue 10, pp 1149–1156 | Cite as

RhoC is essential for the metastasis of gastric cancer

  • Na Liu
  • Guoyun Zhang
  • Feng Bi
  • Yanglin Pan
  • Yan Xue
  • Yongquan Shi
  • Liping Yao
  • Lina Zhao
  • Yi Zheng
  • Daiming Fan
Original Article


Rho family members are known to regulate malignant transformation and motility of cancer cells, but the clinicopathological significance of RhoC remains unclear yet in the case of gastric cancer. In this study, we evaluated the protein expression level of RhoC in gastric cancer tissues and cell lines. Results showed that only weak staining of RhoC was detected in 3 of 33 non-tumorous cases by immunohistochemistry. The expression of RhoC was significantly higher in gastric cancer tissues (23/42, 54.8%) than in non-tumorous tissues (p < 0.01). Further analysis demonstrated that RhoC had high specificity (80.0%) in detecting gastric carcinomas with metastatic potential. RhoC was positively expressed in 18 out of 20 metastases (90.0%), even higher than that in primary gastric cancer tissues. Western blot showed that RhoC was up-regulated in five different gastric cancer cell lines but not expressed in SV40-transformed immortal gastric epithelial cell GES-1. Overexpression of RhoC GTPase in GES-1 cells could produce the motile and invasive phenotype but did not alter the monolayer growth rate. To further study the functions of RhoC, we took the powerful siRNA technology to knock down the expression of RhoC in SGC7901 cells. It was shown that down-regulation of RhoC did not affect the proliferation of SGC7901 cells. However, interference of RhoC expression could inhibit migration, invasion, and anchorage-independent growth of SGC7901 cells. In conclusion, RhoC may play a very important role in the metastasis of gastric carcinoma. Therapeutic strategies targeting RhoC and RhoC-mediated pathways may be a novel approach for treating metastasis of gastric cancer.


Rho GTPase Gastric cancer Metastasis siRNA 



small interfering RNA


  1. 1.
    Alberts SR, Cervantes A, van de Velde CJ (2003) Gastric cancer: epidemiology, pathology and treatment. Ann Oncol 14(2):ii31–36PubMedCrossRefGoogle Scholar
  2. 2.
    Roder DM (2002) The epidemiology of gastric cancer. Gastric Cancer 5(1):5–11PubMedCrossRefGoogle Scholar
  3. 3.
    Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635PubMedCrossRefGoogle Scholar
  4. 4.
    Sahai E, Marshall CJ (2002) Rho-GTPases and cancer. Nat Rev 2:133–142Google Scholar
  5. 5.
    Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 819(5):682–687CrossRefGoogle Scholar
  6. 6.
    Kamai T, Arai K, Tsujii T, Honda M, Yoshida K (2001) Overexpression of RhoA mRNA is associated with advanced stage in testicular germ cell tumour. BJU Int 87(3):227–231PubMedCrossRefGoogle Scholar
  7. 7.
    Kamai T, Tsujii T, Arai K et al (2003) Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 9(7):2632–2641PubMedGoogle Scholar
  8. 8.
    Horiuchi A, Imai T, Wang C et al (2003) Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest 83(6):861–870PubMedGoogle Scholar
  9. 9.
    Kamai T, Yamanishi T, Shirataki H, Takagi K, Asami H, Ito Y, Yoshida K (2004) Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res 10(14):4799–4805PubMedCrossRefGoogle Scholar
  10. 10.
    Adnane J, Muro-Cacho C, Mathews L, Sebti SM, Munoz-Antonia T (2002) Suppression of rho B expression in invasive carcinoma from head and neck cancer patients. Clin Cancer Res 8(7):2225–2232PubMedGoogle Scholar
  11. 11.
    Jiang K, Delarue FL, Sebti SM (2004) EGFR, ErbB2 and Ras but not Src suppress RhoB expression while ectopic expression of RhoB antagonizes oncogene-mediated transformation. Oncogene 23(5):1136–1145PubMedCrossRefGoogle Scholar
  12. 12.
    Prendergast GC (2001) Actin’ up: RhoB in cancer and apoptosis. Nat Rev Cancer 1(2):162–168PubMedCrossRefGoogle Scholar
  13. 13.
    Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535PubMedCrossRefGoogle Scholar
  14. 14.
    Liu N, Bi F, Pan Y et al (2004) Reversal of the malignant phenotype of gastric cancer cells by inhibition of RhoA expression and activity. Clin Cancer Res 10(18):6239–6247 (Pt 1)PubMedCrossRefGoogle Scholar
  15. 15.
    Xue Y, Bi F, Zhang X, Zhang S, Pan Y, Liu N, Shi Y, Yao X, Zheng Y, Fan D (2006) Role of Rac1 and Cdc42 in hypoxia induced p53 and von Hippel–Lindau suppression and HIF1alpha activation. Int J Cancer 118(12):2965–2972PubMedCrossRefGoogle Scholar
  16. 16.
    Wherlock M, Mellor H (2002) The Rho GTPase family: a Racs to Wrchs story. J Cell Sci 115(2):239–240PubMedGoogle Scholar
  17. 17.
    van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD (2002) Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 19(4):301–311PubMedCrossRefGoogle Scholar
  18. 18.
    del Peso L, Hernandez-Alcoceba R, Embade N, Carnero A, Esteve P, Paje C, Lacal JC (1997) Rho proteins induce metastatic properties in vivo. Oncogene 15(25):3047–3057PubMedCrossRefGoogle Scholar
  19. 19.
    Kjoller L, Hall A (1999) Signaling to Rho GTPases. Exp Cell Res 253(1):166–179 (Nov 25)PubMedCrossRefGoogle Scholar
  20. 20.
    Suwa H, Ohshio G, Imamura T, Watanabe G, Arii S, Imamura M, Narumiya S, Hiai H, Fukumoto M (1998) Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br J Cancer 77(1):147–152PubMedGoogle Scholar
  21. 21.
    Wang W, Yang LY, Yang ZL, Huang GW, Lu WQ (2003) Expression and significance of RhoC gene in hepatocellular carcinoma. World J Gastroenterol 9(9):1950–1953PubMedGoogle Scholar
  22. 22.
    Crnogorac-Jurcevic T, Efthimiou E, Nielsen T, Loader J, Terris B, Stamp G, Baron A, Scarpa A, Lemoine NR (2002) Expression profiling of microdissected pancreatic adenocarcinomas. Oncogene 21(29):4587–4594PubMedCrossRefGoogle Scholar
  23. 23.
    van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, Chandrasekharappa S, Strawderman M, Ethier SP, Merajver SD (1999) A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5(9):2511–2519PubMedGoogle Scholar
  24. 24.
    Kleer CG, Griffith KA, Sabel MS, Gallagher G, van Golen KL, Wu ZF, Merajver SD (2005) RhoC-GTPase is a novel tissue biomarker associated with biologically aggressive carcinomas of the breast. Breast Cancer Res Treat 93(2):101–110PubMedCrossRefGoogle Scholar
  25. 25.
    Shikada Y, Yoshino I, Okamoto T, Fukuyama S, Kameyama T, Maehara Y (2003) Higher expression of RhoC is related to invasiveness in non-small cell lung carcinoma. Clin Cancer Res 9(14):5282–5286PubMedGoogle Scholar
  26. 26.
    Faried A, Faried LS, Kimura H, Nakajima M, Sohda M, Miyazaki T, Kato H, Usman N, Kuwano H (2006) RhoA and RhoC proteins promote both cell proliferation and cell invasion of human oesophageal squamous cell carcinoma cell lines in vitro and in vivo. Eur J Cancer 42(10):1455–1465PubMedCrossRefGoogle Scholar
  27. 27.
    Ikoma T, Takahashi T, Nagano S, Li YM, Ohno Y, Ando K, Fujiwara T, Fujiwara H, Kosai K (2004) A definitive role of RhoC in metastasis of orthotopic lung cancer in mice. Clin Cancer Res 10(3):1192–1200PubMedCrossRefGoogle Scholar
  28. 28.
    Mukai M, Endo H, Iwasaki T, Tatsuta M, Togawa A, Nakamura H, Inoue M (2006) RhoC is essential for TGF-beta1-induced invasive capacity of rat ascites hepatoma cells. Biochem Biophys Res Commun 346(1):74–82PubMedCrossRefGoogle Scholar
  29. 29.
    Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R, Mak TW (2005) RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 19(17):1974–1979PubMedCrossRefGoogle Scholar
  30. 30.
    Simpson KJ, Dugan AS, Mercurio AM (2004) Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64(23):8694–8701PubMedCrossRefGoogle Scholar
  31. 31.
    Bellovin DI, Simpson KJ, Danilov T, Maynard E, Rimm DL, Oettgen P, Mercurio AM (2006) Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene 25:6959–6967PubMedCrossRefGoogle Scholar
  32. 32.
    Pille JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P, Lu H, Pritchard LL, Vannier JP, Malvy C, Soria C, Li H (2005) Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther 11(2):267–274PubMedCrossRefGoogle Scholar
  33. 33.
    van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD (2000) RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60(20):5832–5838PubMedGoogle Scholar
  34. 34.
    Reddig PJ, Juliano RL (2005) Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 24(3):425–439PubMedCrossRefGoogle Scholar
  35. 35.
    Wang LH (2004) Molecular signaling regulating anchorage-independent growth of cancer cells. Mt Sinai J Med 71(6):361–367PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Na Liu
    • 1
  • Guoyun Zhang
    • 1
  • Feng Bi
    • 1
  • Yanglin Pan
    • 1
  • Yan Xue
    • 1
  • Yongquan Shi
    • 1
  • Liping Yao
    • 1
  • Lina Zhao
    • 1
  • Yi Zheng
    • 2
  • Daiming Fan
    • 1
  1. 1.State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing HospitalFourth Military Medical UniversityXi’anPeople’s Republic of China
  2. 2.Division of Experimental Hematology, Children’s Hospital Research FoundationUniversity of CincinnatiCincinnatiUSA

Personalised recommendations