Journal of Molecular Medicine

, Volume 85, Issue 6, pp 569–576 | Cite as

MIM: a multifunctional scaffold protein

  • Laura M. MacheskyEmail author
  • Simon A. Johnston


The protein “missing in metastasis”, known as MIM, has been characterised as an actin-binding scaffold protein that may be involved in cancer metastasis. In this paper, we summarise the literature surrounding the role of MIM in actin and membrane dynamics and in signalling to transcription via the sonic hedgehog pathway. MIM is postulated to have many potential activities, including a BAR-like domain termed the IMD (IRS-MIM domain), which can interact with membranes to induce membrane deformation and also with actin and the small GTPase Rac. How this multifunctional protein and its close relative ABBA-1 regulate cellular behaviour is still very much an open question.


Metastasis Actin Motility Scaffold protein 



We thank Roberto Dominguez of the University of Pennsylvania School of Medicine for helpful discussions and for providing the materials for Fig. 3. We also thank the Medical Research Council UK and the Association for International Cancer Research for funding.


  1. 1.
    Lee YG, Macoska JA, Korenchuk S, Pienta KJ (2002) MIM, a potential metastasis suppressor gene in bladder cancer. Neoplasia 4:291–294PubMedCrossRefGoogle Scholar
  2. 2.
    Mattila PK, Salminen M, Yamashiro T, Lappalainen P (2003) Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem 278:8452–8459PubMedCrossRefGoogle Scholar
  3. 3.
    Woodings JA, Sharp SJ, Machesky LM (2003) MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta. Biochem J 371:463–471PubMedCrossRefGoogle Scholar
  4. 4.
    Yamagishi A, Masuda M, Ohki T, Onishi H, Mochizuki N (2004) A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 279:14929–14936PubMedCrossRefGoogle Scholar
  5. 5.
    Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465PubMedCrossRefGoogle Scholar
  6. 6.
    Boquet I, Boujemaa R, Carlier MF, Preat T (2000) Ciboulot regulates actin assembly during Drosophila brain metamorphosis. Cell 102:797–808PubMedCrossRefGoogle Scholar
  7. 7.
    Hertzog M, Yarmola EG, Didry D, Bubb MR, Carlier MF (2002) Control of actin dynamics by proteins made of beta-thymosin repeats: the actobindin family. J Biol Chem 277:14786–14792PubMedCrossRefGoogle Scholar
  8. 8.
    Paunola E, Mattila PK, Lappalainen P (2002) WH2 domain: a small, versatile adapter for actin monomers. FEBS Lett 513:92–97PubMedCrossRefGoogle Scholar
  9. 9.
    Lee SH, Kerff F, Chereau D, Ferron F, Klug A et al (2007) Structural basis for the actin-binding function of missing-in-metastasis. Structure 15:145–155PubMedCrossRefGoogle Scholar
  10. 10.
    Chereau D, Kerff F, Graceffa P, Grabarek Z, Langsetmo K et al (2005) Actin-bound structures of Wiskott–Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc Natl Acad Sci U S A 102:16644–16649PubMedCrossRefGoogle Scholar
  11. 11.
    Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ et al (2005) Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24:240–250PubMedCrossRefGoogle Scholar
  12. 12.
    Disanza A, Mantoani S, Hertzog M, Gerboth S, Frittoli E et al (2006) Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol 8:1337–1347PubMedCrossRefGoogle Scholar
  13. 13.
    Bompard G, Sharp SJ, Freiss G, Machesky LM (2005) Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B. J Cell Sci 118:5393–5403PubMedCrossRefGoogle Scholar
  14. 14.
    Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P (2007) Missing-in-metastasis (MIM) and IRSp53 deform PI (4,5) P2-rich membranes by an inverse BAR domain like mechanism. J Cell Biol 176(7):953–964PubMedCrossRefGoogle Scholar
  15. 15.
    Suetsugu S, Murayama K, Sakamoto A, Hanawa-Suetsugu K, Seto A et al (2006) The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 281:35347–35358PubMedCrossRefGoogle Scholar
  16. 16.
    Gonzalez-Quevedo R, Shoffer M, Horng L, Oro AE (2005) Receptor tyrosine phosphatase-dependent cytoskeletal remodeling by the hedgehog-responsive gene MIM/BEG4. J Cell Biol 168:453–463PubMedCrossRefGoogle Scholar
  17. 17.
    Lin J, Liu J, Wang Y, Zhu J, Zhou K et al (2005) Differential regulation of cortactin and N-WASP-mediated actin polymerization by missing in metastasis (MIM) protein. Oncogene 24:2059–2066PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Y, Zhou K, Zeng X, Lin J, Zhan X (2007) Tyrosine phosphorylation of missing in metastasis protein (MIM/MTSS1) is implicated in platelet derived growth factor mediated cell shape changes. J Biol Chem 282:7624–7631Google Scholar
  19. 19.
    Callahan CA, Ofstad T, Horng L, Wang JK, Zhen HH et al (2004) MIM/BEG4, a sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev 18:2724–2729PubMedCrossRefGoogle Scholar
  20. 20.
    Loberg RD, Neeley CK, Adam-Day LL, Fridman Y, St John LN et al (2005) Differential expression analysis of MIM (MTSS1) splice variants and a functional role of MIM in prostate cancer cell biology. Int J Oncol 26:1699–1705PubMedGoogle Scholar
  21. 21.
    Nixdorf S, Grimm MO, Loberg R, Marreiros A, Russell PJ et al (2004) Expression and regulation of MIM (missing in metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer Lett 215:209–220PubMedCrossRefGoogle Scholar
  22. 22.
    Utikal J, Gratchev A, Muller-Molinet I, Oerther S, Kzhyshkowska J et al (2006) The expression of metastasis suppressor MIM/MTSS1 is regulated by DNA methylation. Int J Cancer 119:2287–2293PubMedCrossRefGoogle Scholar
  23. 23.
    Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EHJ et al (1997) Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276:817–821PubMedCrossRefGoogle Scholar
  24. 24.
    Xie K, Abbruzzese JL (2003) Developmental biology informs cancer: the emerging role of the hedgehog signaling pathway in upper gastrointestinal cancers. Cancer Cell 4:245–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of BirminghamBirminghamUK

Personalised recommendations