Journal of Molecular Medicine

, Volume 85, Issue 9, pp 971–983

Transcript profiles of dendritic cells of PLOSL patients link demyelinating CNS disorders with abnormalities in pathways of actin bundling and immune response

  • Anna Kiialainen
  • Ville Veckman
  • Juha Saharinen
  • Juha Paloneva
  • Massimiliano Gentile
  • Panu Hakola
  • Dimitri Hemelsoet
  • Basil Ridha
  • Outi Kopra
  • Ilkka Julkunen
  • Leena Peltonen
Original Article


Rare monogenic dementias have repeatedly exposed novel pathways guiding to details of the molecular pathogenesis behind this complex clinical phenotype. In this paper, we have studied polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), an early onset dementia with bone fractures caused by mutations in TYROBP (DAP12) and TREM2 genes, which encode important signaling molecules in human dendritic cells (DCs). To identify the pathways and biological processes associated with DAP12/TREM2-mediated signaling, we performed genome wide transcript analysis of in vitro differentiated DCs of PLOSL patients representing functional knockouts of either DAP12 or TREM2. Both DAP12- and TREM2-deficient cells differentiated into DCs and responded to pathogenic stimuli. However, the DCs showed morphological differences compared to control cells due to defects in the actin filaments. Not unexpectedly, transcript profiles of the patient DCs showed differential expression of genes involved in immune response. Importantly, significantly diverging transcript levels were also evident for genes earlier associated with other disorders of the central nervous system (CNS) and genes involved in the remodeling of bone, linking these two immunological genes with critical tissue phenotypes of patients. The data underline the functional diversity of the molecules of the innate immune system and implies their significant contribution also in demyelinating CNS disorders, including those resulting in dementia.


DAP12 TREM2 Nasu–Hakola disease Dendritic cells Human 


  1. 1.
    Hakola HP (1972) Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr Scand Suppl 232:1PubMedGoogle Scholar
  2. 2.
    Nasu T, Tsukahara Y, Terayama K (1973) A lipid metabolic disease-“membranous lipodystrophy”-an autopsy case demonstrating numerous peculiar membrane-structures composed of compound lipid in bone and bone marrow and various adipose tissues. Acta Pathol Jpn 23:539PubMedGoogle Scholar
  3. 3.
    Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V, Hakola P, Bakker AB, Phillips JH, Pekkarinen P, Lanier LL, Timonen T, Peltonen L (2000) Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25:357PubMedCrossRefGoogle Scholar
  4. 4.
    Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, Bianchin M, Bird T, Miranda R, Salmaggi A, Tranebjaerg L, Konttinen Y, Peltonen L (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656PubMedCrossRefGoogle Scholar
  5. 5.
    Klunemann HH, Ridha BH, Magy L, Wherrett JR, Hemelsoet DM, Keen RW, De Bleecker JL, Rossor MN, Marienhagen J, Klein HE, Peltonen L, Paloneva J (2005) The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology 64:1502PubMedCrossRefGoogle Scholar
  6. 6.
    Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH (1998) Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391:703PubMedCrossRefGoogle Scholar
  7. 7.
    McVicar DW, Taylor LS, Gosselin P, Willette-Brown J, Mikhael AI, Geahlen RL, Nakamura MC, Linnemeyer P, Seaman WE, Anderson SK, Ortaldo JR, Mason LH (1998) DAP12-mediated signal transduction in natural killer cells. A dominant role for the Syk protein-tyrosine kinase. J Biol Chem 273:32934PubMedCrossRefGoogle Scholar
  8. 8.
    Bouchon A, Hernandez-Munain C, Cella M, Colonna M (2001) A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J Exp Med 194:1111PubMedCrossRefGoogle Scholar
  9. 9.
    Campbell KS, Colonna M (1999) DAP12: a key accessory protein for relaying signals by natural killer cell receptors. Int J Biochem Cell Biol 31:631PubMedCrossRefGoogle Scholar
  10. 10.
    Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991PubMedGoogle Scholar
  11. 11.
    Cella M, Buonsanti C, Strader C, Kondo T, Salmaggi A, Colonna M (2003) Impaired differentiation of osteoclasts in TREM-2-deficient individuals. J Exp Med 198:645PubMedCrossRefGoogle Scholar
  12. 12.
    Kiialainen A, Hovanes K, Paloneva J, Kopra O, Peltonen L (2005) Dap12 and Trem2, molecules involved in innate immunity and neurodegeneration, are co-expressed in the CNS. Neurobiol Dis 18:314PubMedCrossRefGoogle Scholar
  13. 13.
    Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P, Haltia M, Konttinen YT, Peltonen L (2003) DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med 198:669PubMedCrossRefGoogle Scholar
  14. 14.
    Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe JG, Carson MJ (2002) Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 83:1309PubMedCrossRefGoogle Scholar
  15. 15.
    Veckman V, Miettinen M, Pirhonen J, Siren J, Matikainen S, Julkunen I (2004) Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Th1-type cytokines and chemokines in human monocyte-derived dendritic cells. J Leukoc Biol 75:764PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang B, Schmoyer D, Kirov S, Snoddy J (2004) GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics 5:16PubMedCrossRefGoogle Scholar
  17. 17.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25PubMedCrossRefGoogle Scholar
  18. 18.
    Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, Clarke L, Coates G, Cuff J, Curwen V, Cutts T, Down T, Eyras E, Fernandez-Suarez XM, Gane P, Gibbins B, Gilbert J, Hammond M, Hotz HR, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Keenan S, Lehvaslaiho H, McVicker G, Melsopp C, Meidl P, Mongin E, Pettett R, Potter S, Proctor G, Rae M, Searle S, Slater G, Smedley D, Smith J, Spooner W, Stabenau A, Stalker J, Storey R, Ureta-Vidal A, Woodwark KC, Cameron G, Durbin R, Cox A, Hubbard T, Clamp M (2004) An overview of Ensembl. Genome Res 14:925PubMedCrossRefGoogle Scholar
  19. 19.
    Breitling R, Amtmann A, Herzyk P (2004) Iterative Group Analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics 5:34PubMedCrossRefGoogle Scholar
  20. 20.
    Cella M, Sallusto F, Lanzavecchia A (1997) Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol 9:10PubMedCrossRefGoogle Scholar
  21. 21.
    Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201:647PubMedCrossRefGoogle Scholar
  22. 22.
    Kyono WT, de Jong R, Park RK, Liu Y, Heisterkamp N, Groffen J, Durden DL (1998) Differential interaction of Crkl with Cbl or C3G, Hef-1, and gamma subunit immunoreceptor tyrosine-based activation motif in signaling of myeloid high affinity Fc receptor for IgG (Fc gamma RI). J Immunol 161:5555PubMedGoogle Scholar
  23. 23.
    Lanier LL, Bakker AB (2000) The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol Today 21:611PubMedCrossRefGoogle Scholar
  24. 24.
    Al-Alwan MM, Rowden G, Lee TD, West KA (2001) Fascin is involved in the antigen presentation activity of mature dendritic cells. J Immunol 166:338PubMedGoogle Scholar
  25. 25.
    Terme M, Tomasello E, Maruyama K, Crepineau F, Chaput N, Flament C, Marolleau JP, Angevin E, Wagner EF, Salomon B, Lemonnier FA, Wakasugi H, Colonna M, Vivier E, Zitvogel L (2004) IL-4 confers NK stimulatory capacity to murine dendritic cells: a signaling pathway involving KARAP/DAP12-triggering receptor expressed on myeloid cell 2 molecules. J Immunol 172:5957PubMedGoogle Scholar
  26. 26.
    Hamerman JA, Tchao NK, Lowell CA, Lanier LL (2005) Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol 6:579PubMedCrossRefGoogle Scholar
  27. 27.
    Turnbull IR, McDunn JE, Takai T, Townsend RR, Cobb JP, Colonna M (2005) DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis. J Exp Med 202:363PubMedCrossRefGoogle Scholar
  28. 28.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499PubMedCrossRefGoogle Scholar
  29. 29.
    Wulczyn FG, Naumann M, Scheidereit C (1992) Candidate proto-oncogene bcl-3 encodes a subunit-specific inhibitor of transcription factor NF-kappa B. Nature 358:597PubMedCrossRefGoogle Scholar
  30. 30.
    Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298:1241PubMedCrossRefGoogle Scholar
  31. 31.
    Aitken CJ, Hodge JM, Nicholson GC (2004) Adenoviral down-regulation of osteopontin inhibits human osteoclast differentiation in vitro. J Cell Biochem 93:896PubMedCrossRefGoogle Scholar
  32. 32.
    Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg JR, Steinman L (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:1731PubMedCrossRefGoogle Scholar
  33. 33.
    Bakker AB, Hoek RM, Cerwenka A, Blom B, Lucian L, McNeil T, Murray R, Phillips LH, Sedgwick JD, Lanier LL (2000) DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity 13:345PubMedCrossRefGoogle Scholar
  34. 34.
    Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T 1997) Identification of monocyte chemoattractant protein-1 in senile plaques and reactive microglia of Alzheimer’s disease. Psychiatry Clin Neurosci 51:135PubMedCrossRefGoogle Scholar
  35. 35.
    Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE (1998) Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol 44:831PubMedCrossRefGoogle Scholar
  36. 36.
    Wilms H, Sievers J, Dengler R, Bufler J, Deuschl G, Lucius R (2003) Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration. J Neuroimmunol 144:139PubMedCrossRefGoogle Scholar
  37. 37.
    Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN (1998) Expression of monocyte chemoattractant protein-1 and other beta-chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. J Neuroimmunol 84:238PubMedCrossRefGoogle Scholar
  38. 38.
    Huang D, Wujek J, Kidd G, He TT, Cardona A, Sasse ME, Stein EJ, Kish J, Tani M, Charo IF, Proudfoot AE, Rollins BJ, Handel T, Ransohoff RM (2005) Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB J 19:761PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Anna Kiialainen
    • 1
  • Ville Veckman
    • 2
  • Juha Saharinen
    • 1
    • 4
  • Juha Paloneva
    • 1
  • Massimiliano Gentile
    • 4
  • Panu Hakola
    • 5
  • Dimitri Hemelsoet
    • 6
  • Basil Ridha
    • 7
  • Outi Kopra
    • 1
    • 8
  • Ilkka Julkunen
    • 2
  • Leena Peltonen
    • 1
    • 3
    • 9
  1. 1.Department of Molecular MedicineNational Public Health InstituteHelsinkiFinland
  2. 2.Department of Viral Diseases and ImmunologyNational Public Health InstituteHelsinkiFinland
  3. 3.Department of Medical GeneticsUniversity of HelsinkiHelsinkiFinland
  4. 4.Biomedicum Bioinformatics UnitUniversity of HelsinkiHelsinkiFinland
  5. 5.Department of Forensic PsychiatryUniversity of KuopioKuopioFinland
  6. 6.Department of NeurologyGhent University HospitalGhentBelgium
  7. 7.Dementia Research CentreNational Hospital for Neurology and NeurosurgeryLondonUK
  8. 8.Neuroscience CenterUniversity of HelsinkiHelsinkiFinland
  9. 9.The Broad InstituteMITBostonUSA

Personalised recommendations