Advertisement

Involvement of autophagy in viral infections: antiviral function and subversion by viruses

  • Lucile Espert
  • Patrice Codogno
  • Martine Biard-PiechaczykEmail author
Review

Abstract

Autophagy is a cellular process involved in the degradation and turn-over of long-lived proteins and organelles, which can be subjected to suppression or further induction in response to different stimuli. According to its essential role in cellular homeostasis, autophagy has been implicated in several pathologies including cancer, neurodegeneration and myopathies. More recently, autophagy has been described as a mechanism of both innate and adaptive immunity against intracellular bacteria and viruses. In this context, autophagy has been proposed as a protective mechanism against viral infection by degrading the pathogens into autolysosomes. This is strengthened by the fact that several proteins involved in interferon (IFN) signalling pathways are linked to autophagy regulation. However, several viruses have evolved strategies to divert IFN-mediated pathways and autophagy to their own benefit. This review provides an overview of the autophagic process and its involvement in the infection by different viral pathogens and of the connections existing between autophagy and proteins involved in IFN signalling pathways.

Keywords

Autophagy Virus Interferon Virophagy 

Notes

Acknowledgments

Institutional funds from the Centre National de la Recherche Scientifique (CNRS) and the University (UM1), and grants from SIDACTION and the Agence Nationale de Recherches sur Le SIDA (ANRS) supported this work. L. Espert was the recipient of a fellowship from SIDACTION.

References

  1. 1.
    Glickman MH, Ciechanover A (2002) The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428PubMedGoogle Scholar
  2. 2.
    Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552PubMedGoogle Scholar
  3. 3.
    Massey AC, Zhang C, Cuervo AM (2006) Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73:205–235PubMedGoogle Scholar
  4. 4.
    Klionsky DJ (2005) Autophagy. Curr Biol 15:R282–R283PubMedGoogle Scholar
  5. 5.
    Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263:55–72PubMedGoogle Scholar
  6. 6.
    Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174PubMedGoogle Scholar
  7. 7.
    Komatsu M, Waguri S, Ueno T et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434PubMedGoogle Scholar
  8. 8.
    Juhasz G, Neufeld TP (2006) Autophagy: a forty-year search for a missing membrane source. PLoS Biol 4:e36PubMedGoogle Scholar
  9. 9.
    Dunn WA Jr (1990) Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110:1923–1933PubMedGoogle Scholar
  10. 10.
    Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198–202PubMedGoogle Scholar
  11. 11.
    Seglen PO, Berg TO, Blankson H, Fengsrud M, Holen I, Stromhaug PE (1996) Structural aspects of autophagy. Adv Exp Med Biol 389:103–111PubMedGoogle Scholar
  12. 12.
    Marino G, Lopez-Otin C (2004) Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 61:1439–1454PubMedGoogle Scholar
  13. 13.
    Deretic V (2006) Autophagy as an immune defense mechanism. Curr Opin Immunol 18:375–382PubMedGoogle Scholar
  14. 14.
    Dengjel J, Schoor O, Fischer R et al (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 102:7922–7927PubMedGoogle Scholar
  15. 15.
    Schmid D, Dengjel J, Schoor O, Stevanovic S, Munz C (2006) Autophagy in innate and adaptive immunity against intracellular pathogens. J Mol Med 84:194–202PubMedGoogle Scholar
  16. 16.
    Colombo MI (2005) Pathogens and autophagy: subverting to survive. Cell Death Differ 12(Suppl 2):1481–1483PubMedGoogle Scholar
  17. 17.
    Kurmasheva RT, Houghton PJ (2006) IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta 1766:1–22PubMedGoogle Scholar
  18. 18.
    Yin VP, Thummel CS (2005) Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin Cell Dev Biol 16:237–243PubMedGoogle Scholar
  19. 19.
    Kadowaki M, Razaul Karim M, Carpi A, Miotto G (2006) Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med 27:426–443PubMedGoogle Scholar
  20. 20.
    Heymann D (2006) Autophagy: a protective mechanism in response to stress and inflammation. Curr Opin Investig Drugs 7:443–450PubMedGoogle Scholar
  21. 21.
    Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9:65–76PubMedGoogle Scholar
  22. 22.
    Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T (2001) Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2:330–335PubMedGoogle Scholar
  23. 23.
    Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119:259–270PubMedGoogle Scholar
  24. 24.
    Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939PubMedGoogle Scholar
  25. 25.
    Liang C, Feng P, Ku B et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699PubMedGoogle Scholar
  26. 26.
    Mizushima N, Noda T, Yoshimori T et al (1998) A protein conjugation system essential for autophagy. Nature 395:395–398PubMedGoogle Scholar
  27. 27.
    Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117:2805–2812PubMedGoogle Scholar
  28. 28.
    Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502PubMedGoogle Scholar
  29. 29.
    Klionsky DJ (2005) The correct way to monitor autophagy in higher eukaryotes. Autophagy 1:65PubMedGoogle Scholar
  30. 30.
    Marino G, Uria JA, Puente XS, Quesada V, Bordallo J, Lopez-Otin C (2003) Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J Biol Chem 278:3671–3678PubMedGoogle Scholar
  31. 31.
    Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL (2003) A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 278:51841–51850PubMedGoogle Scholar
  32. 32.
    Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429PubMedGoogle Scholar
  33. 33.
    Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36:2503–2518PubMedGoogle Scholar
  34. 34.
    Noda T, Kim J, Huang WP et al (2000) Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148:465–480PubMedGoogle Scholar
  35. 35.
    Webber JL, Young AR, Tooze SA (2007) Atg9 Trafficking in Mammalian Cells. Autophagy 3:54–56PubMedGoogle Scholar
  36. 36.
    Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Biol Chem 273:21883–21892PubMedGoogle Scholar
  37. 37.
    Gutierrez MG, Munafo DB, Beron W, Colombo MI (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117:2687–2697PubMedGoogle Scholar
  38. 38.
    Jager S, Bucci C, Tanida I et al (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837–4848PubMedGoogle Scholar
  39. 39.
    Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18PubMedGoogle Scholar
  40. 40.
    Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23:33–42PubMedCrossRefGoogle Scholar
  41. 41.
    Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ (2001) Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 276:2083–2087PubMedGoogle Scholar
  42. 42.
    Yang Z, Huang J, Geng J, Nair U, Klionsky DJ (2006) Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17:5094–5104PubMedGoogle Scholar
  43. 43.
    Yang YP, Liang ZQ, Gu ZL, Qin ZH (2005) Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 26:1421–1434PubMedGoogle Scholar
  44. 44.
    Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518PubMedGoogle Scholar
  45. 45.
    Kamada Y, Sekito T, Ohsumi Y (2004) Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol 279:73–84PubMedGoogle Scholar
  46. 46.
    Young AR, Chan EY, Hu XW et al (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900PubMedGoogle Scholar
  47. 47.
    Yamamoto A, Cremona ML, Rothman JE (2006) Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. J Cell Biol 172:719–731PubMedGoogle Scholar
  48. 48.
    Sarkar S, Rubinsztein DC (2006) Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2:132–134PubMedGoogle Scholar
  49. 49.
    Talloczy Z, Jiang W, Virgin HWt et al (2002) Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci USA 99:190–195PubMedGoogle Scholar
  50. 50.
    Kouroku Y, Fujita E, Tanida I et al (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14:230–239PubMedGoogle Scholar
  51. 51.
    Ogata M, Hino S, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231PubMedGoogle Scholar
  52. 52.
    He B (2006) Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13:393–403PubMedGoogle Scholar
  53. 53.
    Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213Google Scholar
  54. 54.
    Kuma A, Hatano M, Matsui M et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036PubMedGoogle Scholar
  55. 55.
    Lum JJ, Bauer DE, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248PubMedGoogle Scholar
  56. 56.
    Boya P, Gonzalez-Polo RA, Casares N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040PubMedGoogle Scholar
  57. 57.
    Bursch W, Ellinger A, Kienzl H et al (1996) Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17:1595–1607PubMedGoogle Scholar
  58. 58.
    Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734PubMedGoogle Scholar
  59. 59.
    Debnath J, Baehrecke EH, Kroemer G (2005) Does autophagy contribute to cell death? Autophagy 1:66–74PubMedGoogle Scholar
  60. 60.
    Gonzalez-Polo RA, Boya P, Pauleau AL et al (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118:3091–3102PubMedGoogle Scholar
  61. 61.
    Djavaheri-Mergny M, Amelotti M, Mathieu J et al (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382PubMedGoogle Scholar
  62. 62.
    Espert L, Denizot M, Grimaldi M et al (2006) Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest 116:2161–2172PubMedGoogle Scholar
  63. 63.
    Aita VM, Liang XH, Murty VV et al (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59:59–65PubMedGoogle Scholar
  64. 64.
    Crighton D, Wilkinson S, O’Prey J et al (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134PubMedGoogle Scholar
  65. 65.
    Hait WN, Jin S, Yang JM (2006) A matter of life or death (or both): understanding autophagy in cancer. Clin Cancer Res 12:1961–1965PubMedGoogle Scholar
  66. 66.
    Eskelinen EL (2005) Doctor Jekyll and Mister Hyde: autophagy can promote both cell survival and cell death. Cell Death Differ 12(Suppl 2):1468–1472PubMedGoogle Scholar
  67. 67.
    Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688PubMedGoogle Scholar
  68. 68.
    Kirkegaard K, Taylor MP, Jackson WT (2004) Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2:301–314PubMedGoogle Scholar
  69. 69.
    Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766PubMedGoogle Scholar
  70. 70.
    Nakagawa I, Amano A, Mizushima N et al (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040PubMedGoogle Scholar
  71. 71.
    Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307:727–731PubMedGoogle Scholar
  72. 72.
    Schnaith A, Kashkar H, Leggio S, Addicks K, Kronke M, Krut O (2007) Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282:2695–2706PubMedGoogle Scholar
  73. 73.
    Paludan C, Schmid D, Landthaler M et al (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:593–596PubMedGoogle Scholar
  74. 74.
    Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315PubMedGoogle Scholar
  75. 75.
    Morel JB, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4:671–683PubMedGoogle Scholar
  76. 76.
    Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577PubMedGoogle Scholar
  77. 77.
    Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67:227–264PubMedGoogle Scholar
  78. 78.
    Decman V, Freeman ML, Kinchington PR, Hendricks RL (2005) Immune control of HSV-1 latency. Viral Immunol 18:466–473PubMedGoogle Scholar
  79. 79.
    He B, Gross M, Roizman B (1997) The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 94:843–848PubMedGoogle Scholar
  80. 80.
    Leib DA (2002) Counteraction of interferon-induced antiviral responses by herpes simplex viruses. Curr Top Microbiol Immunol 269:171–185PubMedGoogle Scholar
  81. 81.
    Leib DA, Machalek MA, Williams BR, Silverman RH, Virgin HW (2000) Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci USA 97:6097–6101PubMedGoogle Scholar
  82. 82.
    Talloczy Z, Virgin HWt, Levine B (2006) PKR-Dependent Autophagic Degradation of Herpes Simplex Virus Type 1. Autophagy 2:24–29PubMedGoogle Scholar
  83. 83.
    Dales S, Eggers HJ, Tamm I, Palade GE (1965) Electron microscopic study of the formation of poliovirus. Virology 26:379–389PubMedGoogle Scholar
  84. 84.
    Schlegel A, Giddings TH Jr, Ladinsky MS, Kirkegaard K (1996) Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol 70:6576–6588PubMedGoogle Scholar
  85. 85.
    Jackson WT, Giddings TH Jr, Taylor MP et al (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156PubMedGoogle Scholar
  86. 86.
    Kirkegaard K, Jackson WT (2005) Topology of double-membraned vesicles and the opportunity for non-lytic release of cytoplasm. Autophagy 1:182–184PubMedGoogle Scholar
  87. 87.
    Belov GA, Altan-Bonnet N, Kovtunovych G, Jackson CL, Lippincott-Schwartz J, Ehrenfeld E (2007) Hijacking components of the cellular secretory pathway for replication of poliovirus RNA. J Virol 81:558–567PubMedGoogle Scholar
  88. 88.
    Fauci AS (1988) The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239:617–622PubMedGoogle Scholar
  89. 89.
    Terai C, Kornbluth RS, Pauza CD, Richman DD, Carson DA (1991) Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J Clin Invest 87:1710–1715PubMedCrossRefGoogle Scholar
  90. 90.
    Finkel TH, Tudor-Williams G, Banda NK et al (1995) Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1:129–134PubMedGoogle Scholar
  91. 91.
    Espert L, Denizot M, Grimaldi M et al (2007) Autophagy and CD4(+) T Lymphocyte Destruction by HIV-1. Autophagy 3:32–34PubMedGoogle Scholar
  92. 92.
    Finzi A, Brunet A, Xiao Y, Thibodeau J, Cohen EA (2006) Major histocompatibility complex class II molecules promote human immunodeficiency virus type 1 assembly and budding to late endosomal/multivesicular body compartments. J Virol 80:9789–9797PubMedGoogle Scholar
  93. 93.
    Jouvenet N, Neil SJ, Bess C et al (2006) Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 4:e435PubMedGoogle Scholar
  94. 94.
    Levine B, Goldman JE, Jiang HH, Griffin DE, Hardwick JM (1996) Bc1-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci USA 93:4810–4815PubMedGoogle Scholar
  95. 95.
    Liang XH, Kleeman LK, Jiang HH et al (1998) Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596PubMedGoogle Scholar
  96. 96.
    Chisaka H, Morita E, Yaegashi N, Sugamura K (2003) Parvovirus B19 and the pathogenesis of anaemia. Rev Med Virol 13:347–359PubMedGoogle Scholar
  97. 97.
    Morita E, Tada K, Chisaka H et al (2001) Human parvovirus B19 induces cell cycle arrest at G(2) phase with accumulation of mitotic cyclins. J Virol 75:7555–7563PubMedGoogle Scholar
  98. 98.
    Nakashima A, Tanaka N, Tamai K et al (2006) Survival of parvovirus B19-infected cells by cellular autophagy. Virology 349:254–263PubMedGoogle Scholar
  99. 99.
    Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR (2004) Coronavirus replication complex formation utilises components of cellular autophagy. J Biol Chem 279:10136–10141PubMedGoogle Scholar
  100. 100.
    Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J et al (2006) Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 80:5927–5940PubMedGoogle Scholar
  101. 101.
    Berkova Z, Crawford SE, Trugnan G, Yoshimori T, Morris AP, Estes MK (2006) Rotavirus NSP4 induces a novel vesicular compartment regulated by calcium and associated with viroplasms. J Virol 80:6061–6071PubMedGoogle Scholar
  102. 102.
    Fricke J, Voss C, Thumm M, Meyers G (2004) Processing of a pestivirus protein by a cellular protease specific for light chain 3 of microtubule-associated proteins. J Virol 78:5900–5912PubMedGoogle Scholar
  103. 103.
    Haller O, Kochs G, Weber F (2006) The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344:119–130PubMedGoogle Scholar
  104. 104.
    Pyo JO, Jang MH, Kwon YK et al (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729PubMedGoogle Scholar
  105. 105.
    Hovanessian AG, Brown RE, Kerr IM (1977) Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature 268:537–540PubMedGoogle Scholar
  106. 106.
    Meurs E, Chong K, Galabru J et al (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379–390PubMedGoogle Scholar
  107. 107.
    Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18:6112–6120PubMedGoogle Scholar
  108. 108.
    Li S, Min JY, Krug RM, Sen GC (2006) Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 349:13–21PubMedGoogle Scholar
  109. 109.
    Shohat G, Shani G, Eisenstein M, Kimchi A (2002) The DAP-kinase family of proteins: study of a novel group of calcium-regulated death-promoting kinases. Biochim Biophys Acta 1600:45–50PubMedGoogle Scholar
  110. 110.
    Inbal B, Shani G, Cohen O, Kissil JL, Kimchi A (2000) Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol 20:1044–1054PubMedGoogle Scholar
  111. 111.
    Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157:455–468PubMedGoogle Scholar
  112. 112.
    Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS (2004) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA 101:3438–3443PubMedGoogle Scholar
  113. 113.
    Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35PubMedGoogle Scholar
  114. 114.
    Thorburn J, Moore F, Rao A et al (2005) Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol Biol Cell 16:1189–1199PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Lucile Espert
    • 1
  • Patrice Codogno
    • 1
    • 2
  • Martine Biard-Piechaczyk
    • 1
    Email author
  1. 1.CPBS, UM1, UM2, CNRSInstitut de BiologieMontpellier Cedex 2France
  2. 2.INSERM U756, Faculté de PharmacieUniversité Paris-Sud XIChâtenay-MalabryFrance

Personalised recommendations