Journal of Molecular Medicine

, Volume 85, Issue 6, pp 623–633

The effects of COX-2 selective and non-selective NSAIDs on the initiation and progression of atherosclerosis in ApoE−/− mice

  • Julia Metzner
  • Laura Popp
  • Claudiu Marian
  • Ronald Schmidt
  • Christine Manderscheid
  • Christoph Renne
  • Beate Fisslthaler
  • Ingrid Fleming
  • Rudi Busse
  • Gerd Geisslinger
  • Ellen Niederberger
Original Article


In this study, we investigated the effects of prolonged administration of the selective COX-2 inhibitors celecoxib and rofecoxib and the non-selective NSAID naproxen on the initiation and progression of atherosclerosis. ApoE−/− mice, as well as corresponding wild-type mice, were fed either a normal chow or a high fat Western diet with or without addition of the respective drugs over a period of 16 weeks. Thereafter, aortic lesion size, plasma lipid levels, and COX-2 expression in the plaques were determined. The results showed that neither the COX-2 selective inhibitors nor naproxen had a significant impact on the initiation and progression of atherosclerosis in diet-fed ApoE−/− mice, although both celecoxib and rofecoxib showed a tendency to reduce plaque size. This slight effect may be due to selective inhibition of COX-2 activity because the COX-2 expression was not altered in the plaque. Plasma lipid levels were also not significantly influenced by these drugs. Interestingly, in ApoE−/− mice that have been fed with normal chow, we found an increased incidence of plaque formation after treatment with celecoxib and rofecoxib, indicating that coxibs may promote the initiation of atherosclerosis. This effect was probably masked in diet-fed mice by the more pronounced effects of the high cholesterol diet. In conclusion, the reduction in diet-induced plaque size in animals fed a high fat diet and the promotion of atherosclerosis in mice on a normal diet indicate a dual role of the coxibs. In advanced stages of atherosclerosis, they may exert antithrombotic properties due to their COX-2 inhibiting activity, whereas in very early stages they may favor the initiation of atherogenesis. However, because these results were only observed in ApoE−/− and not in wild-type animals, coxibs may increase the risk of thrombosis in patients with a predisposition for thrombotic complications.


Atherosclerosis Cyclooxygenase NSAID Thromboxane Prostacyclin Cholesterol 


  1. 1.
    Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–S420PubMedCrossRefGoogle Scholar
  2. 2.
    Schonbeck U, Sukhova GK, Graber P, Coulter S, Libby P (1999) Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am J Pathol 155:1281–1291PubMedGoogle Scholar
  3. 3.
    Stemme V, Swedenborg J, Claesson H, Hansson GK (2000) Expression of cyclo-oxygenase-2 in human atherosclerotic carotid arteries. Eur J Vasc Endovasc Surg 20:146–152PubMedCrossRefGoogle Scholar
  4. 4.
    Chenevard R, Hurlimann D, Bechir M, Enseleit F, Spieker L, Hermann M, Riesen W, Gay S, Gay RE, Neidhart M, Michel B, Luscher TF, Noll G, Ruschitzka F (2003) Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation 107:405–409PubMedCrossRefGoogle Scholar
  5. 5.
    Reis ED, Roque M, Dansky H, Fallon JT, Badimon JJ, Cordon-Cardo C, Shiff SJ, Fisher EA (2000) Sulindac inhibits neointimal formation after arterial injury in wild-type and apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 97:12764–12769PubMedCrossRefGoogle Scholar
  6. 6.
    Paul A, Calleja L, Camps J, Osada J, Vilella E, Ferre N, Mayayo E, Joven J (2000) The continuous administration of aspirin attenuates atherosclerosis in apolipoprotein E-deficient mice. Life Sci 68:457–465PubMedCrossRefGoogle Scholar
  7. 7.
    Pratico D, Tillmann C, Zhang ZB, Li H, FitzGerald GA (2001) Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low-density lipoprotein receptor knockout mice. Proc Natl Acad Sci USA 98:3358–3363PubMedCrossRefGoogle Scholar
  8. 8.
    FitzGerald GA (2003) COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov 2:879–890PubMedCrossRefGoogle Scholar
  9. 9.
    Burleigh ME, Babaev VR, Oates JA, Harris RC, Gautam S, Riendeau D, Marnett LJ, Morrow JD, Fazio S, Linton MF (2002) Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 105:1816–1823PubMedCrossRefGoogle Scholar
  10. 10.
    Rott D, Zhu J, Burnett MS, Zhou YF, Zalles-Ganley A, Ogunmakinwa J, Epstein SE (2003) Effects of MF-tricyclic, a selective cyclooxygenase-2 inhibitor, on atherosclerosis progression and susceptibility to cytomegalovirus replication in apolipoprotein-E knockout mice. J Am Coll Cardiol 41:1812–1819PubMedCrossRefGoogle Scholar
  11. 11.
    Olesen M, Kwong E, Meztli A, Kontny F, Seljeflot I, Arnesen H, Lyngdorf L, Falk E (2002) No effect of cyclooxygenase inhibition on plaque size in atherosclerosis-prone mice. Scand Cardiovasc J 36:362–367PubMedCrossRefGoogle Scholar
  12. 12.
    Bea F, Blessing E, Bennett BJ, Kuo CC, Campbell LA, Kreuzer J, Rosenfeld ME (2003) Chronic inhibition of cyclooxygenase-2 does not alter plaque composition in a mouse model of advanced unstable atherosclerosis. Cardiovasc Res 60:198–204PubMedCrossRefGoogle Scholar
  13. 13.
    Cardiovascular and cerebrovascular events in the randomized, controlled Alzheimer’s disease anti-inflammatory prevention trial (ADAPT) (2006). PLoS Clin Trials 1:e33Google Scholar
  14. 14.
    Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, Davis B, Day R, Ferraz MB, Hawkey CJ, Hochberg MC, Kvien TK, Schnitzer TJ (2000) Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 343: 1520–1528PubMedCrossRefGoogle Scholar
  15. 15.
    Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A, Konstam MA, Baron JA (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352:1092–1102PubMedCrossRefGoogle Scholar
  16. 16.
    Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E, Bertagnolli M (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352: 1071–1080PubMedCrossRefGoogle Scholar
  17. 17.
    Johnsen SP, Larsson H, Tarone RE, McLaughlin JK, Norgard B, Friis S, Sorensen HT (2005) Risk of hospitalization for myocardial infarction among users of rofecoxib, celecoxib, and other NSAIDs: a population-based case-control study. Arch Intern Med 165:978–984PubMedCrossRefGoogle Scholar
  18. 18.
    Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C (2006) Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 332:1302–1308PubMedCrossRefGoogle Scholar
  19. 19.
    Mukherjee D, Nissen SE, Topol EJ (2001) Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 286:954–959PubMedCrossRefGoogle Scholar
  20. 20.
    FitzGerald GA (2002) Cardiovascular pharmacology of nonselective nonsteroidal anti-inflammatory drugs and coxibs: clinical considerations. Am J Cardiol 89:26D–32DPubMedCrossRefGoogle Scholar
  21. 21.
    Van Doornum S, McColl G, Wicks IP (2002) Accelerated atherosclerosis: an extraarticular feature of rheumatoid arthritis? Arthritis Rheum 46:862–873PubMedCrossRefGoogle Scholar
  22. 22.
    McAdam BF, Catella-Lawson F, Mardini IA, Kapoor S, Lawson JA, FitzGerald GA (1999) Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA 96:272–277PubMedCrossRefGoogle Scholar
  23. 23.
    Rose MJ, Woolf EJ, Matuszewski BK (2000) Determination of celecoxib in human plasma by normal-phase high-performance liquid chromatography with column switching and ultraviolet absorbance detection. J Chromatogr B Biomed Sci Appl 738:377–385PubMedCrossRefGoogle Scholar
  24. 24.
    Schubert W, Bonnekoh B, Pommer AJ, Philipsen L, Bockelmann R, Malykh Y, Gollnick H, Friedenberger M, Bode M, Dress AW (2006) Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol 24:1270–1278PubMedCrossRefGoogle Scholar
  25. 25.
    Schubert W (2003) Topological proteomics, toponomics, MELK-technology. Adv Biochem Eng Biotechnol 83:189–209PubMedGoogle Scholar
  26. 26.
    Burbach GJ, Dehn D, Del Turco D, Staufenbiel M, Deller T (2004) Laser microdissection reveals regional and cellular differences in GFAP mRNA upregulation following brain injury, axonal denervation, and amyloid plaque deposition. Glia 48:76–84PubMedCrossRefGoogle Scholar
  27. 27.
    Kunz S, Niederberger E, Ehnert C, Coste O, Pfenninger A, Kruip J, Wendrich TM, Schmidtko A, Tegeder I, Geisslinger G (2004) The calpain inhibitor MDL 28170 prevents inflammation-induced neurofilament light chain breakdown in the spinal cord and reduces thermal hyperalgesia. Pain 110:409–418PubMedCrossRefGoogle Scholar
  28. 28.
    Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730PubMedGoogle Scholar
  29. 29.
    Levesque LE, Brophy JM, Zhang B (2006) Time variations in the risk of myocardial infarction among elderly users of COX-2 inhibitors. CMAJ 174:1563–1569PubMedGoogle Scholar
  30. 30.
    Burleigh ME, Babaev VR, Yancey PG, Major AS, McCaleb JL, Oates JA, Morrow JD, Fazio S, Linton MF (2005) Cyclooxygenase-2 promotes early atherosclerotic lesion formation in ApoE-deficient and C57BL/6 mice. J Mol Cell Cardiol 39:443–452PubMedCrossRefGoogle Scholar
  31. 31.
    Linton MF, Fazio S (2004) Cyclooxygenase-2 and inflammation in atherosclerosis. Curr Opin Pharmacol 4:116–123PubMedCrossRefGoogle Scholar
  32. 32.
    Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140PubMedGoogle Scholar
  33. 33.
    Davies NM, McLachlan AJ, Day RO, Williams KM (2000) Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet 38:225–242PubMedCrossRefGoogle Scholar
  34. 34.
    Belton OA, Duffy A, Toomey S, Fitzgerald DJ (2003) Cyclooxygenase isoforms and platelet vessel wall interactions in the apolipoprotein E knockout mouse model of atherosclerosis. Circulation 108:3017–3023PubMedCrossRefGoogle Scholar
  35. 35.
    Cayatte AJ, Du Y, Oliver-Krasinski J, Lavielle G, Verbeuren TJ, Cohen RA (2000) The thromboxane receptor antagonist S18886 but not aspirin inhibits atherogenesis in apo E-deficient mice: evidence that eicosanoids other than thromboxane contribute to atherosclerosis. Arterioscler Thromb Vasc Biol 20:1724–1728PubMedGoogle Scholar
  36. 36.
    Gryglewski RJ, Chlopicki S, Swies J (2005) In vivo endothelial interaction between ACE and COX inhibitors. Prostaglandins Leukot Essent Fat Acids 72:129–131CrossRefGoogle Scholar
  37. 37.
    Dogne JM, Supuran CT, Pratico D (2005) Adverse cardiovascular effects of the coxibs. J Med Chem 48:2251–2257PubMedCrossRefGoogle Scholar
  38. 38.
    Tegeder I, Pfeilschifter J, Geisslinger G (2001) Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 15:2057–2072PubMedCrossRefGoogle Scholar
  39. 39.
    Grosch S, Maier TJ, Schiffmann S, Geisslinger G (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98:736–747PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Julia Metzner
    • 1
  • Laura Popp
    • 1
  • Claudiu Marian
    • 1
  • Ronald Schmidt
    • 1
  • Christine Manderscheid
    • 1
  • Christoph Renne
    • 1
  • Beate Fisslthaler
    • 2
  • Ingrid Fleming
    • 2
  • Rudi Busse
    • 2
  • Gerd Geisslinger
    • 1
  • Ellen Niederberger
    • 1
  1. 1.pharmazentrum frankfurt/ZAFESKlinikum der Johann Wolfgang Goethe-Universität FrankfurtFrankfurt am MainGermany
  2. 2.Institut für Kardiovaskuläre Physiologie/ZAFESJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations