Journal of Molecular Medicine

, Volume 85, Issue 4, pp 397–404 | Cite as

A novel locus for autosomal recessive nonsyndromic hearing impairment, DFNB63, maps to chromosome 11q13.2–q13.4

  • E. Kalay
  • R. Caylan
  • A. F. Kıroglu
  • T. Yasar
  • R. W. J. Collin
  • J. G. A. M. Heister
  • J. Oostrik
  • C. W. R. J. Cremers
  • H. G. Brunner
  • A. Karaguzel
  • H. Kremer
Original Article


Hereditary hearing impairment is a genetically heterogeneous disorder. To date, 49 autosomal recessive nonsyndromic hearing impairment (ARNSHI) loci have been described, and there are more than 16 additional loci announced. In 25 of the known loci, causative genes have been identified. A genome scan and fine mapping revealed a novel locus for ARNSHI (DFNB63) on chromosome 11q13.2–q13.4 in a five-generation Turkish family (TR57). The homozygous linkage interval is flanked by the markers D11S1337 and D11S2371 and spans a 5.3-Mb interval. A maximum two-point log of odds score of 6.27 at a recombination fraction of θ = 0.0 was calculated for the marker D11S4139. DFNB63 represents the eighth ARNSHI locus mapped to chromosome 11, and about 3.33 Mb separate the DFNB63 region from MYO7A (DFNB2/DFNB11). Sequencing of coding regions and exon–intron boundaries of 13 candidate genes, namely SHANK2, CTTN, TPCN2, FGF3, FGF4, FGF19, FCHSD2, PHR1, TMEM16A, RAB6A, MYEOV, P2RY2 and KIAA0280, in genomic DNA from an affected individual of family TR57 revealed no disease-causing mutations.


ARNSHI DFNB63 Deafness Hearing loss 11q13.2–q13.4 


  1. 1.
    Friedman TB, Griffith AJ (2003) Human nonsyndromic sensorineural deafness. Annu Rev Genomics Hum Genet 4:341–402PubMedCrossRefGoogle Scholar
  2. 2.
    Mehl AL, Thomson V (1998) Newborn hearing screening: the great omission. Pediatrics 101:E4PubMedCrossRefGoogle Scholar
  3. 3.
    Mehl AL, Thomson V (2002) The Colorado newborn hearing screening project, 1992–1999: on the threshold of effective population-based universal newborn hearing screening. Pediatrics 109:E7PubMedCrossRefGoogle Scholar
  4. 4.
    Roizen NJ (2003) Nongenetic causes of hearing loss. Ment Retard Dev Disabil Res Rev 9:120–127PubMedCrossRefGoogle Scholar
  5. 5.
    Morton NE (1991) Genetic epidemiology of hearing impairment. Ann NY Acad Sci 630:16–31PubMedCrossRefGoogle Scholar
  6. 6.
    Van Camp G, Smith RJH (2006) Hereditary hearing loss homepage.
  7. 7.
    Van Laer L, Cryns K, Smith RJ, Van Camp G (2003) Nonsyndromic hearing loss. Ear Hear 24:275–788PubMedCrossRefGoogle Scholar
  8. 8.
    Naz S, Griffith AJ, Riazuddin S, Hampton LL, Battey JF Jr, Khan SN, Riazuddin S, Wilcox ER, Friedman TB (2004) Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J Med Genet 41:591–595PubMedCrossRefGoogle Scholar
  9. 9.
    Seipel K, O’Brien SP, Iannotti E, Medley QG, Streuli M (2001) Tara, a novel F-actin binding protein, associates with the Trio guanine nucleotide exchange factor and regulates actin cytoskeletal organization. J Cell Sci 114:389–399PubMedGoogle Scholar
  10. 10.
    Reiners J, Nagel-Wolfrum K, Jurgens K, Marker T, Wolfrum U (2006) Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 83:97–119PubMedCrossRefGoogle Scholar
  11. 11.
    Petersen MB, Willems PJ (2006) Non-syndromic, autosomal-recessive deafness. Clin Genet 69:371–392PubMedCrossRefGoogle Scholar
  12. 12.
    Guipponi M, Vuagniaux G, Wattenhofer M, Shibuya K, Vazquez M, Dougherty L, Scamuffa N, Guida E, Okui M, Rossier C, Hancock M, Buchet K, Reymond A, Hummler E, Marzella PL, Kudoh J, Shimizu N, Scott HS, Antonarakis SE, Rossier BC (2002) The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum Mol Genet 11:2829–2836PubMedCrossRefGoogle Scholar
  13. 13.
    Wattenhofer M, Sahin-Calapoglu N, Andreasen D, Kalay E, Caylan R, Braillard B, Fowler-Jaeger N, Reymond A, Rossier BC, Karaguzel A, Antonarakis SE (2005 ) A novel TMPRSS3 missense mutation in a DFNB8/10 family prevents proteolytic activation of the protein. Hum Genet 117:528–535PubMedCrossRefGoogle Scholar
  14. 14.
    Muallem D, Ashmore J (2006) An anion antiporter model of prestin, the outer hair cell motor protein. Biophys J 1(90):4035–4045CrossRefGoogle Scholar
  15. 15.
    Delmaghani S, Del Castillo FJ, Michel V, Leibovici M, Aghaie A, Ron U, Van Laer L, Ben-Tal N, Van Camp G, Weil D, Langa F, Lathrop M, Avan P, Petit C (2006) Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 38:770–778PubMedCrossRefGoogle Scholar
  16. 16.
    Miller, SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215PubMedCrossRefGoogle Scholar
  17. 17.
    Lindner TH, Hoffmann K (2005) easyLINKAGE: a PERL script for easy and automated two-/multi-point linkage analyses. Bioinformatics 21:405–407PubMedCrossRefGoogle Scholar
  18. 18.
    Rozen S, and Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, NJ, pp 365–386Google Scholar
  19. 19.
    Kalay E, Caylan R, Kremer H, de Brouwer AP, Karaguzel A (2005) GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel mutations. Hear Res 203:88–93PubMedCrossRefGoogle Scholar
  20. 20.
    Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millasseau P, Marc S, Bernardi G, Lathrop M, Weissenbach J (1994) The 1993–94 Genethon human genetic linkage map. Nat Genet 7:246–339PubMedCrossRefGoogle Scholar
  21. 21.
    Broman K, Murray JC, Scheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex specific variation in recombination. Am J Hum Genet 63:861–869PubMedCrossRefGoogle Scholar
  22. 22.
    Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247PubMedGoogle Scholar
  23. 23.
    Holme RH, Bussoli TJ, Steel KP (2002) Table of gene expression in the developing ear.
  24. 24.
    Luijendijk MW, van de Pol TJ, van Duijnhoven G, den Hollander AI, ten Caat J, van Limpt V, Brunner HG, Kremer H, Cremers FP (2003) Cloning, characterization, and mRNA expression analysis of novel human fetal cochlear cDNAs. Genomics 82:480–490PubMedCrossRefGoogle Scholar
  25. 25.
    Geneatlas. Candidate genes in a chromosomes region (2003)
  26. 26.
    The Hearing Research Group at Brigham and Women’s Hospital (2002) Human cochlear cDNA library and EST database.
  27. 27.
    Pertea M, Lin X, Salzberg SL. (2001) GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res 29:1185–1190 (Mar)CrossRefGoogle Scholar
  28. 28.
    Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571PubMedCrossRefGoogle Scholar
  29. 29.
    Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23:569–582PubMedCrossRefGoogle Scholar
  30. 30.
    Davies C, Tingley D, Kachar B, Wenthold RJ, Petralia RS (2001) Distribution of members of the PSD-95 family of MAGUK proteins at the synaptic region of inner and outer hair cells of the guinea pig cochlea. Synapse 40:258–268PubMedCrossRefGoogle Scholar
  31. 31.
    Du Y, Weed SA, Xiong WC, Marshall TD, Parsons JT (1998) Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Mol Cell Biol 18:5838–5851PubMedGoogle Scholar
  32. 32.
    Frolenkov GI, Mammano F, Kachar B (2003) Regulation of outer hair cell cytoskeletal stiffness by intracellular Ca2+: underlying mechanism and implications for cochlear mechanics. Cell Calcium 33:185–195PubMedCrossRefGoogle Scholar
  33. 33.
    Shen J, Harada N, Nakazawa H, Yamashita T (2005) Involvement of the nitric oxide-cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signalling in cochlear inner hair cells. Eur J Neurosci 21:2912–2922PubMedCrossRefGoogle Scholar
  34. 34.
    Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+–ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394PubMedCrossRefGoogle Scholar
  35. 35.
    Schultz JM, Yang Y, Caride AJ, Filoteo AG, Penheiter AR, Lagziel A, Morell RJ, Mohiddin SA, Fananapazir L, Madeo AC, Penniston JT, Griffith AJ (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med 352:1557–1564PubMedCrossRefGoogle Scholar
  36. 36.
    Rinkwitz S, Bober E, Baker R (2001) Development of the vertebrate inner ear. Ann NY Acad Sci 942:1–14PubMedCrossRefGoogle Scholar
  37. 37.
    Baker CV, Bronner-Fraser M (2001) Vertebrate cranial placodes I. Embryonic induction. Dev Biol 232:1–61PubMedCrossRefGoogle Scholar
  38. 38.
    Noramly S, Grainger RM (2002) Determination of the embryonic inner ear. J Neurobiol 53:100–128PubMedCrossRefGoogle Scholar
  39. 39.
    Mansour SL, Goddard JM, Capecchi MR (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117:13–28PubMedGoogle Scholar
  40. 40.
    Alvarez Y, Alonso MT, Vendrell V, Zelarayan LC, Chamero P, Theil T, Bosl MR, Kato S, Maconochie M, Riethmacher D, Schimmang T (2003) Requirements for FGF3 and FGF10 during inner ear formation. Development 130:6329–6338PubMedCrossRefGoogle Scholar
  41. 41.
    Xu S, Ladak R, Swanson DA, Soltyk A, Sun H, Ploder L, Vidgen D, Duncan AM, Garami E, Valle D, McInnes RR (1999) PHR1 encodes an abundant, pleckstrin homology domain-containing integral membrane protein in the photoreceptor outer segments. J Biol Chem 274:35676–35685PubMedCrossRefGoogle Scholar
  42. 42.
    Xu S, Wang Y, Zhao H, Zhang L, Xiong W, Yau KW, Hiel H, Glowatzki E, Ryugo DK, Valle D (2004) PHR1, a PH domain-containing protein expressed in primary sensory neurons. Mol Cell Biol 24:9137–9151PubMedCrossRefGoogle Scholar
  43. 43.
    Etournay R, El-Amraoui A, Bahloul A, Blanchard S, Roux I, Pezeron G, Michalski N, Daviet L, Hardelin JP, Legrain P, Petit C (2005) PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa. J Cell Sci 118:2891–2899PubMedCrossRefGoogle Scholar
  44. 44.
    Dumont RA, Zhao YD, Holt JR, Bahler M, Gillespie PG (2002) Myosin-I isozymes in neonatal rodent auditory and vestibular epithelia. J Assoc Res Otolaryngol 3:375–389PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • E. Kalay
    • 1
    • 2
    • 3
    • 7
  • R. Caylan
    • 4
  • A. F. Kıroglu
    • 5
  • T. Yasar
    • 6
  • R. W. J. Collin
    • 2
  • J. G. A. M. Heister
    • 1
  • J. Oostrik
    • 2
  • C. W. R. J. Cremers
    • 2
  • H. G. Brunner
    • 1
  • A. Karaguzel
    • 3
  • H. Kremer
    • 2
  1. 1.Department of Human GeneticsRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  2. 2.Department of OtorhinolaryngologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  3. 3.Department of Medical Biology and Genetics, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
  4. 4.Department of Otorhinolaryngology, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
  5. 5.Department of Otorhinolaryngology, Faculty of MedicineYuzuncu Yil UniversityVanTurkey
  6. 6.Department of Ophthalmology, Faculty of MedicineYuzuncu Yil UniversityVanTurkey
  7. 7.Department of Medical Biology, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations