Journal of Molecular Medicine

, Volume 85, Issue 2, pp 139–148 | Cite as

Hypoxia-induced genetic instability—a calculated mechanism underlying tumor progression

  • L. Eric HuangEmail author
  • Ranjit S. Bindra
  • Peter M. Glazer
  • Adrian L. Harris


The cause of human cancers is imputed to the genetic alterations at nucleotide and chromosomal levels of ill-fated cells. It has long been recognized that genetic instability—the hallmark of human cancers—is responsible for the cellular changes that confer progressive transformation on cancerous cells. How cancer cells acquire genetic instability, however, is unclear. We propose that tumor development is a result of expansion and progression—two complementary aspects that collaborate with the tumor microenvironment—hypoxia in particular, on genetic alterations through the induction of genetic instability. In this article, we review the recent literature regarding how hypoxia functionally impairs various DNA repair pathways resulting in genetic instability and discuss the biomedical implications in cancer biology and treatment.


DNA repair Genetic instability HIF Hypoxia Tumor microenvironment Tumor progression 



double-strand break


hypoxia-inducible factor


homologous recombination


hypoxia-responsive element


mismatch repair


nucleotide excision repair


nonhomologous end-joining


  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  2. 2.
    Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799PubMedCrossRefGoogle Scholar
  3. 3.
    Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347:1593–1603PubMedCrossRefGoogle Scholar
  4. 4.
    Koshiji M, Huang LE (2004) Dynamic balancing of the dual nature of HIF-1alpha for cell survival. Cell Cycle 3:853–854PubMedGoogle Scholar
  5. 5.
    Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47PubMedCrossRefGoogle Scholar
  6. 6.
    Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276PubMedCrossRefGoogle Scholar
  7. 7.
    Bindra RS, Glazer PM (2005) Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res 569:75–85PubMedGoogle Scholar
  8. 8.
    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514PubMedCrossRefGoogle Scholar
  9. 9.
    Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259PubMedCrossRefGoogle Scholar
  10. 10.
    Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992PubMedCrossRefGoogle Scholar
  11. 11.
    Pugh CW, O’Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272:11205–11214PubMedCrossRefGoogle Scholar
  12. 12.
    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275PubMedCrossRefGoogle Scholar
  13. 13.
    Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427PubMedCrossRefGoogle Scholar
  14. 14.
    Tanimoto K, Makino Y, Pereira T, Poellinger L (2000) Mechanism of regulation of the hypoxia-inducible factor-1alpha by the von Hippel-Lindau tumor suppressor protein. Embo J 19:4298–4309PubMedCrossRefGoogle Scholar
  15. 15.
    Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468PubMedGoogle Scholar
  16. 16.
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472PubMedGoogle Scholar
  17. 17.
    Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 98:9630–9635PubMedCrossRefGoogle Scholar
  18. 18.
    Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54PubMedCrossRefGoogle Scholar
  19. 19.
    Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340PubMedCrossRefGoogle Scholar
  20. 20.
    Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. Embo J 22:4082–4090PubMedCrossRefGoogle Scholar
  21. 21.
    Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67PubMedCrossRefGoogle Scholar
  22. 22.
    Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA, Bunn HF, Livingston DM (1996) An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 93:12969–12973PubMedCrossRefGoogle Scholar
  23. 23.
    Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271:32529–32537PubMedCrossRefGoogle Scholar
  24. 24.
    Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732PubMedCrossRefGoogle Scholar
  25. 25.
    Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE (2004) HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. Embo J 23:1949–1956PubMedCrossRefGoogle Scholar
  26. 26.
    Mack FA, Patel JH, Biju MP, Haase VH, Simon MC (2005) Decreased growth of Vhl−/− fibrosarcomas is associated with elevated levels of cyclin kinase inhibitors p21 and p27. Mol Cell Biol 25:4565–4578PubMedCrossRefGoogle Scholar
  27. 27.
    Li CY, Little JB, Hu K, Zhang W, Zhang L, Dewhirst MW, Huang Q (2001) Persistent genetic instability in cancer cells induced by non-DNA-damaging stress exposures. Cancer Res 61:428–432PubMedGoogle Scholar
  28. 28.
    Paquette B, Little JB (1994) In vivo enhancement of genomic instability in minisatellite sequences of mouse C3H/10T1/2 cells transformed in vitro by X-rays. Cancer Res 54:3173–3178PubMedGoogle Scholar
  29. 29.
    Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Research 56:5754–5757PubMedGoogle Scholar
  30. 30.
    Papp-Szabo E, Josephy PD, Coomber BL (2005) Microenvironmental influences on mutagenesis in mammary epithelial cells. Int J Cancer 116:679–685PubMedCrossRefGoogle Scholar
  31. 31.
    Hammond EM, Green SL, Giaccia AJ (2003) Comparison of hypoxia-induced replication arrest with hydroxyurea and aphidicolin-induced arrest. Mutat Res 532:205–213PubMedGoogle Scholar
  32. 32.
    Yuan J, Glazer PM (1998) Mutagenesis induced by the tumor microenvironment. Mutat Res 400:439–446PubMedGoogle Scholar
  33. 33.
    Welbourn CR, Goldman G, Paterson IS, Valeri CR, Shepro D, Hechtman HB (1991) Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil. Br J Surg 78:651–655PubMedCrossRefGoogle Scholar
  34. 34.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715PubMedCrossRefGoogle Scholar
  35. 35.
    Smith DI, Huang H, Wang L (1998) Common fragile sites and cancer (review). Int J Oncol 12:187–196PubMedGoogle Scholar
  36. 36.
    Rice GC, Spiro IJ, Ling CC (1985) Detection of S-phase overreplication following chronic hypoxia using a monoclonal anti-BrdUrd. Int J Radiat Oncol Biol Phys 11:1817–1822PubMedGoogle Scholar
  37. 37.
    Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 85:9533–9537PubMedCrossRefGoogle Scholar
  38. 38.
    Rice GC, Hoy C, Schimke RT (1986) Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in Chinese hamster ovary cells. Proc Natl Acad Sci USA 83:5978–5982PubMedCrossRefGoogle Scholar
  39. 39.
    Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M (1998) A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 2:259–265PubMedCrossRefGoogle Scholar
  40. 40.
    Buttel I, Fechter A, Schwab M (2004) Common fragile sites and cancer: targeted cloning by insertional mutagenesis. Ann N Y Acad Sci 1028:14–27PubMedGoogle Scholar
  41. 41.
    Arlt MF, Casper AM, Glover TW (2003) Common fragile sites. Cytogenet Genome Res 100:92–100PubMedCrossRefGoogle Scholar
  42. 42.
    Zhu Y, McAvoy S, Kuhn R, Smith DI (2006) RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 25:2901–2908PubMedCrossRefGoogle Scholar
  43. 43.
    Buermeyer AB, Deschenes SM, Baker SM, Liskay RM (1999) Mammalian DNA mismatch repair. Annu Rev Genet 33:533–564PubMedCrossRefGoogle Scholar
  44. 44.
    Mihaylova VT, Bindra RS, Yuan J, Campisi D, Narayanan L, Jensen R, Giordano F, Johnson RS, Rockwell S, Glazer PM (2003) Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 23:3265–3273PubMedCrossRefGoogle Scholar
  45. 45.
    Koshiji M, To KK, Hammer S, Kumamoto K, Harris AL, Modrich P, Huang LE (2005) HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 17:793–803PubMedCrossRefGoogle Scholar
  46. 46.
    Shahrzad S, Quayle L, Stone C, Plumb C, Shirasawa S, Rak JW, Coomber BL (2005) Ischemia-induced K-ras mutations in human colorectal cancer cells: role of microenvironmental regulation of MSH2 expression. Cancer Res 65:8134–8141PubMedCrossRefGoogle Scholar
  47. 47.
    To KK, Koshiji M, Hammer S, Huang LE (2005) Genetic instability: the dark side of the hypoxic response. Cell Cycle 4:881–882PubMedGoogle Scholar
  48. 48.
    Yuan J, Narayanan L, Rockwell S, Glazer PM (2000) Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60:4372–4376PubMedGoogle Scholar
  49. 49.
    Bindra RS, Schaffer PJ, Meng A, Woo J, Maseide K, Roth ME, Lizardi P, Hedley DW, Bristow RG, Glazer PM (2004) Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells. Mol Cell Biol 24:8504–8518PubMedCrossRefGoogle Scholar
  50. 50.
    Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ, Bristow RG, Classon MK, Glazer PM (2005) Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res 65:11597–11604PubMedCrossRefGoogle Scholar
  51. 51.
    Luk CK, Veinot-Drebot L, Tjan E, Tannock IF (1990) Effect of transient hypoxia on sensitivity to doxorubicin in human and murine cell lines. J Natl Cancer Inst 82:684–692PubMedCrossRefGoogle Scholar
  52. 52.
    Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ (2002) Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22:1834–1843PubMedCrossRefGoogle Scholar
  53. 53.
    Hammond EM, Dorie MJ, Giaccia AJ (2003) ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 278:12207–12213PubMedCrossRefGoogle Scholar
  54. 54.
    Hammond EM, Dorie MJ, Giaccia AJ (2004) Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res 64:6556–6562PubMedCrossRefGoogle Scholar
  55. 55.
    Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E (2004) Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev 18:2095–2107PubMedCrossRefGoogle Scholar
  56. 56.
    Kim MS, Baek JH, Bae MK, Kim KW (2001) Human rad21 gene, hHR21(SP), is downregulated by hypoxia in human tumor cells. Biochem Biophys Res Commun 281:1106–1112PubMedCrossRefGoogle Scholar
  57. 57.
    Meng AX, Jalali F, Cuddihy A, Chan N, Bindra RS, Glazer PM, Bristow RG (2005) Hypoxia down-regulates DNA double strand break repair gene expression in prostate cancer cells. Radiother Oncol 76:168–176PubMedCrossRefGoogle Scholar
  58. 58.
    To KK, Sedelnikova OA, Samons M, Bonner WM, Huang LE (2006) The phosphorylation status of PAS-B distinguishes HIF-1alpha from HIF-2alpha in NBS1 repression. Embo J 25(20):4784–4794PubMedCrossRefGoogle Scholar
  59. 59.
    Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd, Hays L, Morgan WF, Petrini JH (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486PubMedCrossRefGoogle Scholar
  60. 60.
    D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327PubMedCrossRefGoogle Scholar
  61. 61.
    Huang LE, Bunn HF (2003) Hypoxia-inducible factor and its biomedical relevance. J Biol Chem 278:19575–19578PubMedCrossRefGoogle Scholar
  62. 62.
    Bindra RS, Schaffer PJ, Meng A, Woo J, Maseide K, Roth ME, Lizardi P, Hedley DW, Bristow RG, Glazer PM (2005) Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability. Ann N Y Acad Sci 1059:184–195PubMedCrossRefGoogle Scholar
  63. 63.
    Attwooll C, Denchi EL, Helin K (2004) The E2F family: specific functions and overlapping interests. Embo J 23:4709–4716PubMedCrossRefGoogle Scholar
  64. 64.
    Dimova DK, Dyson NJ (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24:2810–2826PubMedCrossRefGoogle Scholar
  65. 65.
    Cam H, Dynlacht BD (2003) Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 3:311–316PubMedCrossRefGoogle Scholar
  66. 66.
    Zhu W, Giangrande PH, Nevins JR (2004) E2Fs link the control of G1/S and G2/M transcription. Embo J 23:4615–4626PubMedCrossRefGoogle Scholar
  67. 67.
    Helt AM, Galloway DA (2001) Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J Virol 75:6737–6747PubMedCrossRefGoogle Scholar
  68. 68.
    Um JH, Kang CD, Bae JH, Shin GG, Kim do W, Kim DW, Chung BS, Kim SH (2004) Association of DNA-dependent protein kinase with hypoxia inducible factor-1 and its implication in resistance to anticancer drugs in hypoxic tumor cells. Exp Mol Med 36:233–242PubMedGoogle Scholar
  69. 69.
    Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182PubMedCrossRefGoogle Scholar
  70. 70.
    Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386:761–763PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang J, Willers H, Feng Z, Ghosh JC, Kim S, Weaver DT, Chung JH, Powell SN, Xia F (2004) Chk2 phosphorylation of BRCA1 regulates DNA double-strand break repair. Mol Cell Biol 24:708–718PubMedCrossRefGoogle Scholar
  72. 72.
    Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21:521–531PubMedCrossRefGoogle Scholar
  73. 73.
    Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185PubMedCrossRefGoogle Scholar
  74. 74.
    Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197PubMedCrossRefGoogle Scholar
  75. 75.
    Friedberg EC (2003) DNA damage and repair. Nature 421:436–440PubMedCrossRefGoogle Scholar
  76. 76.
    Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91PubMedCrossRefGoogle Scholar
  77. 77.
    Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684PubMedCrossRefGoogle Scholar
  78. 78.
    Unruh A, Ressel A, Mohamed HG, Johnson RS, Nadrowitz R, Richter E, Katschinski DM, Wenger RH (2003) The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene 22:3213–3220PubMedCrossRefGoogle Scholar
  79. 79.
    Song X, Liu X, Chi W, Liu Y, Wei L, Wang X, Yu J (2006) Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother PharmacolGoogle Scholar
  80. 80.
    Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–441PubMedCrossRefGoogle Scholar
  81. 81.
    Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, Dewhirst MW (2005) Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8:99–110PubMedCrossRefGoogle Scholar
  82. 82.
    Moeller BJ, Dewhirst MW (2006) HIF-1 and tumour radiosensitivity. Br J Cancer 95:15PubMedCrossRefGoogle Scholar
  83. 83.
    Williams KJ, Telfer BA, Xenaki D, Sheridan MR, Desbaillets I, Peters HJ, Honess D, Harris AL, Dachs GU, van der Kogel A, Stratford IJ (2005) Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1. Radiother Oncol 75:89–98PubMedCrossRefGoogle Scholar
  84. 84.
    Maynard MA, Evans AJ, Hosomi T, Hara S, Jewett MA, Ohh M (2005) Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. FASEB J 19:1396–1406PubMedCrossRefGoogle Scholar
  85. 85.
    Turner KJ, Moore JW, Jones A, Taylor CF, Cuthbert-Heavens D, Han C, Leek RD, Gatter KC, Maxwell PH, Ratcliffe PJ, Cranston D, Harris AL (2002) Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res 62:2957–2961PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • L. Eric Huang
    • 1
    Email author
  • Ranjit S. Bindra
    • 2
  • Peter M. Glazer
    • 2
  • Adrian L. Harris
    • 3
  1. 1.Department of NeurosurgeryUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.Department of Therapeutic RadiologyYale University School of MedicineNew HavenUSA
  3. 3.Cancer Research UK Growth Factor Group, Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalOxfordUK

Personalised recommendations