The roles of endogenous reactive oxygen species and nitric oxide in triptolide-induced apoptotic cell death in macrophages

  • Xiaofeng Bao
  • Jun Cui
  • Yuanyuan Wu
  • Xiaodong Han
  • Cheng Gao
  • Zichun Hua
  • Pingping ShenEmail author
Original Article


Triptolide, a major active component extracted from the root of Tripterygium wilfordii Hook f, has been shown to possess potent immunosuppressive and anti-inflammatory properties. In the present report, we reported that triptolide increased the generation of reactive oxygen species (ROS) and nitric oxide (NO) and induced apoptosis of RAW 264.7 cells in a dose-dependent manner (5–25 ng/ml). The antioxidant, reduced glutathione (GSH), significantly inhibited triptolide-induced apoptosis and inhibited the degradation of Bcl-2 protein, disruption of mitochondrial membrane potential, release of cytochrome c from mitochondria into the cytosol, activation of caspase-3, and cleavage of poly-(ADP-ribose)-polymerase. The inducible nitric oxide synthase-specific inhibitor 1400w blocked triptolide-induced apoptosis, but did not alter mitochondria disruption and caspase-3 activation. These results, for the first time, implicated that the increased endogenous ROS and NO co-mediated triptolide-induced apoptosis in macrophages. ROS initiated triptolide-induced apoptosis by the mitochondria signal pathway, while the apoptotic cell death mediated by NO was not via mitochondria collapse and caspase-3 activation. In addition, combining mathematical calculation and computer simulation based on our conventional experimental results, we set and validated the apoptotic model and provided more dynamic processes of triptolide-induced apoptotic cascade in macrophages.


Triptolide Macrophage Apoptosis Reactive oxygen species Nitric oxide Simulation 



We thank Dr. Zhiwei Wu (School of Dental Medicine, University of Pennsylvania) for his critical comments and grammatical correction of the manuscript. This work was supported by the “111” PROJECT and 985-PROJECT grant from Nanjing University.


  1. 1.
    Tao XL, Sun Y, Dong Y, Xiao YL, Hu DW, Shi YP, Zhu QL, Dai H, Zhang HZ (1989) A prospective, controlled, double-blind, cross-over study of Tripterygium wilfodii Hook F in treatment of rheumatoid arthritis. Chin Med J (Engl) 102:327–332Google Scholar
  2. 2.
    Qin WZ, Zhu GD, Yang SM, Han KY, Wang J (1983) Clinical observations on Tripterygium wilfordii in treatment of 26 cases of discoid lupus erythematosus. J Tradit Chin Med 3:131–132PubMedGoogle Scholar
  3. 3.
    Jiang X (1994) Clinical observations on the use of the Chinese herb Tripterygium wilfordii Hook for the treatment of nephrotic syndrome. Pediatr Nephrol 8:343–344PubMedCrossRefGoogle Scholar
  4. 4.
    Xu WY, Zheng JR, Lu XY (1985) Tripterygium in dermatologic therapy. Int J Dermatol 24:152–157PubMedGoogle Scholar
  5. 5.
    Tao X, Cai JJ, Lipsky PE (1995) The identity of immunosuppressive components of the ethyl acetate extract and chloroform methanol extract (T2) of Tripterygium wilfordii Hook F. J Pharmacol Exp Ther 272:1305–1312PubMedGoogle Scholar
  6. 6.
    Shamon LA, Pezzuto JM, Graves JM, Mehta RR, Wangcharoentraku S, Sangsuwan R, Chaichana S, Tuchinda P, Cleason P, Reutrakul V (1997) Evaluation of the mutagenic, cytotoxic, and antitumor potential of triptolide, a highly oxygenated diterpene isolated from Tripterygium wilfordii. Cancer Lett 112:113–117PubMedCrossRefGoogle Scholar
  7. 7.
    Wei YS, Adachi I (1991) Inhibitory effect of triptolide on colony formation of breast and stomach cancer cell lines. Chung Kuo Yao Li Hsueh Pao 12:406–410PubMedGoogle Scholar
  8. 8.
    Wang J, Xu R, Jin R, Chen Z, Fidler JM (2000) Immunosuppressive activity of the Chinese medicinal plant Tripterygium wilfordii. I. Prolongation of rat cardiac and renal allograft survival by the PG27 extract and immunosuppressive synergy in combination therapy with cyclosporine. Transplantation 70:447–455PubMedCrossRefGoogle Scholar
  9. 9.
    Yang Y, Liu Z, Tolosa E, Yang J, Li L (1998) Triptolide induces apoptotic death of T lymphocyte. Immunopharmacology 40:139–149PubMedCrossRefGoogle Scholar
  10. 10.
    Choi YJ, Kim TG, Kim YH, Lee SH, Kwon YK, Suh SI, Park JW, Kwon TK (2003) Immunosuppressant PG490 (triptolide) induces apoptosis through the activation of caspase-3 and down-regulation of XIAP in U937 cells. Biochem Pharmacol 66:273–280PubMedCrossRefGoogle Scholar
  11. 11.
    Lee KY, Park JS, Jee YK, Rosen GD (2002) Triptolide sensitizes lung cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by inhibition of NF-kappaB activation. Exp Mol Med 34:462–468PubMedGoogle Scholar
  12. 12.
    Liu Q, Chen T, Chen H, Zhang M, Li N, Lu Z, Ma P, Cao X (2004) Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p38 MAP kinase phosphorylation and caspase 3 activation. Biochem Biophys Res Commun 319:980–986PubMedCrossRefGoogle Scholar
  13. 13.
    Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449PubMedCrossRefGoogle Scholar
  14. 14.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedCrossRefGoogle Scholar
  15. 15.
    Schinzel A, Kaufmann T, Borner C (2004) Bcl-2 family members: integrators of survival and death signals in physiology and pathology [corrected]. Biochim Biophys Acta 1644:95–105PubMedCrossRefGoogle Scholar
  16. 16.
    Sharpe JC, Arnoult D, Youle RJ (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644:107–113PubMedCrossRefGoogle Scholar
  17. 17.
    Ling YH, Liebes L, Zou Y, Perez-Soler R (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem 278:33714–33723PubMedCrossRefGoogle Scholar
  18. 18.
    Schwacha MG, Somers SD (1998) Thermal injury induces macrophage hyperactivity through pretussis toxin-sensitive and -insensitive pathways. Shock 9:249–255PubMedCrossRefGoogle Scholar
  19. 19.
    Kinne RW, Brauer R, Stuhlmuller B, Palombo-Kinne E, Burmester GR (2000) Macrophages in rheumatoid arthritis. Arthritis Res 2:189–202PubMedCrossRefGoogle Scholar
  20. 20.
    Yanni G, Whelan A, Feighery C, Bresnihan B (1994) Synovial tissue macrophages and joint erosion in rheumatoid arthritis. Ann Rheum Dis 53:39–44PubMedCrossRefGoogle Scholar
  21. 21.
    Kim YH, Lee SH, Lee JY, Choi SW, Park JW, Kwon TK (2004) Triptolide inhibits murine-inducible nitric oxide synthase expression by down-regulating lipopolysaccharide-induced activity of nuclear factor-êB and c-Jun NH2-terminal kinase. Eur J Pharmacol 494:1–9PubMedCrossRefGoogle Scholar
  22. 22.
    Wu Y, Cui J, Bao X, Chan S, Young DO, Liu D, Shen P (2006) Triptolide attenuates oxidative stress, NF-kappaB activation and multiple cytokine gene expression in murine peritoneal macrophage. Int J Mol Med 17:141–150PubMedGoogle Scholar
  23. 23.
    Qin ZH, Wang Y, Kikly KK, Sapp E, Kegel KB, Aronin N, DiFiglia M (2001) Pro-caspase-8 is predominantly localized in mitochondria and released into cytoplasm upon apoptotic stimulation. J Biol Chem 276:8079–8086PubMedCrossRefGoogle Scholar
  24. 24.
    Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 279:36892–36897PubMedCrossRefGoogle Scholar
  25. 25.
    Bentele M, Lavrik I, Ulrich M, Stößer S, Heermann DW, Kalthoff H, Krammer PH, Eils R (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166:839–851PubMedCrossRefGoogle Scholar
  26. 26.
    Fussenegger M, Bailey JE, Varner J (2004) A mathematical model of caspase function in apoptosis. Nat Biotechnol 18:768–774Google Scholar
  27. 27.
    Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2005) Bistability in apoptosis: roles of bax, bcl-2 and mitochondrial permeability transition pores. Biophys J 90(5):1546–1559PubMedCrossRefGoogle Scholar
  28. 28.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489PubMedCrossRefGoogle Scholar
  29. 29.
    Gross A, Jockel J, Wei MC, Korsmeyer SJ (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 17:3878–3885PubMedCrossRefGoogle Scholar
  30. 30.
    Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901PubMedCrossRefGoogle Scholar
  31. 31.
    Wolter KG, Hse YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292PubMedCrossRefGoogle Scholar
  32. 32.
    Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of bax channel-forming activity by bcl-2. Science 277:370–372PubMedCrossRefGoogle Scholar
  33. 33.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention apoptosis by bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132PubMedCrossRefGoogle Scholar
  34. 34.
    Jia L, Macey MG, Yin Y, Newland AC, Kelsey SM (1999) Subcellular distribution and redistribution of Bcl-2 family proteins in human leukemia cells undergoing apoptosis. Blood 93:2353–2359PubMedGoogle Scholar
  35. 35.
    Kok SH, Cheng SJ, Hong CY, Lee JJ, Lin SK, Kuo YS, Chiang CP, Kuo MY (2005) Norcantharidin-induced apoptosis in oral cancer cells is associated with an increase of proapoptotic to antiapoptotic protein ratio. Cancer Lett 217:43–52PubMedCrossRefGoogle Scholar
  36. 36.
    Chung YM, Bae YS, Lee SY (2003) Molecular ordering of ROS production, mitochondrial changes, and caspase activation during sodium salicylate-induced apoptosis. Free Radic Bio Med 34:434–442CrossRefGoogle Scholar
  37. 37.
    Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P (2003) Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci U S A 100:15035–15040PubMedCrossRefGoogle Scholar
  38. 38.
    Valenti LM, Mathieu J, Chancerelle Y, De Sousa M, Levacher M, Dinh-Xuan AT, Florentin I (2005) High levels of endogenous nitric oxide produced after burn injury in rats arrest activated T lymphocytes in the first G1 phase of the cell cycle and then induce their apoptosis. Exp Cell Res 306:150–167PubMedCrossRefGoogle Scholar
  39. 39.
    Yang S, Chen J, Guo Z, Xu XM, Wang L, Pei XF, Yang J, Underhill CB, Zhang L (2003) Triptolide inhibits the growth and metastasis of solid tumors. Mol Cancer Ther 2:65–72PubMedGoogle Scholar
  40. 40.
    Jiang XH, Wong BC, Lin MC, Zhu GH, Kung HF, Jiang SH, Yang D, Lam SK (2001) Functional p53 is required for triptolide-induced apoptosis and AP-1 and nuclear factor-kappa B activation in gastric cancer cells. Oncogene 20:8009–8018PubMedCrossRefGoogle Scholar
  41. 41.
    Chang WT, Kang JJ, Lee KY, Wei K, Anderson E, Gotmare S, Ross JA, Rosen GD (2001) TPL and chemotherapy cooperate in tumor cell apoptosis: a role for the p53 pathway. J Biol Chem 276:2221–2227PubMedGoogle Scholar
  42. 42.
    Duffield JS (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 104:27–38CrossRefGoogle Scholar
  43. 43.
    Gumireddy K, Reddy CD, Swamy N (2003) Mitogen-activated protein kinase pathway mediates DBP-maf-induced apoptosis in RAW 264.7 macrophages. J Cell Biochem 90:87–96PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Xiaofeng Bao
    • 1
  • Jun Cui
    • 1
  • Yuanyuan Wu
    • 1
  • Xiaodong Han
    • 2
  • Cheng Gao
    • 1
  • Zichun Hua
    • 1
  • Pingping Shen
    • 1
    Email author
  1. 1.State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
  2. 2.Reproduction and Immunology LaboratoryMedical School of Nanjing UniversityNanjingChina

Personalised recommendations