Advertisement

Journal of Molecular Medicine

, Volume 84, Issue 11, pp 919–931 | Cite as

Cell-line and tissue-specific signatures of androgen receptor-coregulator transcription

  • Jan-Hendrik Bebermeier
  • James D. Brooks
  • Samuel E. DePrimo
  • Ralf Werner
  • Uta Deppe
  • Janos Demeter
  • Olaf Hiort
  • Paul-Martin HolterhusEmail author
Original Article

Abstract

Normal genital skin fibroblasts (GSF) and the human prostate carcinoma cell line LNCaP have been used widely as cell culture models of genital origin to study androgen receptor (AR) signaling. We demonstrate that LNCaP shows a reproducible response to androgens as assessed using cDNA-microarrays representing approximately 32,000 unique human genes, whereas several independent GSF strains are virtually unresponsive. We show that LNCaP cells express markedly higher AR protein levels likely contributing to the observed differences of androgen responsiveness. However, previous data suggested that AR-expression levels alone do not determine androgen responsiveness of human GSF compared to LNCaP. We hypothesized that cell-specific differences in expression levels of AR coregulators might contribute to differences in androgen responsiveness and might be found by comparing LNCaP and GSFs. Using the Canadian McGill-database of AR coregulators (http://www.mcgill.ca/androgendb), we identified 61 AR-coregulator genes represented by 282 transcripts on our microarray platform that was used to measure transcript profiles of LNCaP and GSF cells. Baseline expression levels of 48 AR-coregulator transcripts representing 33 distinct genes showed significant differences between GSF and LNCaP, four of which we confirmed by reverse transcriptase polymerase chain reaction. Compared to LNCaP, GSFs displayed significant upregulation of AR coregulators that can function as repressors of AR-transactivation, such as caveolin 1. Analysis of a recently published comprehensive dataset of 115 microarrays representing 35 different human tissues revealed tissue-specific signatures of AR coregulators that segregated with ontogenetically related groups of tissues (e.g., lymphatic system and genital tissues, brain). Our data demonstrate the existence of cell-line and tissue-specific expression patterns of molecules with documented AR coregulatory functions. Therefore, differential expression patterns of AR coregulators could modify tissue-specificity and diversity of androgen actions in development, physiology, and disease.

Keywords

Androgen receptor Coregulator Corepressor Coactivator Microarray 

Notes

Acknowledgements

The study was supported by the Deutsche Forschungsgemeinschaft (DFG) (grants Ho 2073/2-1, 2-2 and KFO 111/1-1, and 1-2, projects C and D to P.M.H.) with support by the Medical Faculty of Lübeck of the University of Schleswig-Holstein, Germany (P.M.H and O.H.), and the Doris Duke Charitable Foundation (J.D.B.). We thank Genevieve Vidanes, Nicole Homburg, Christine Marschke, Erika Meinecke, and Dagmar Struve for excellent technical assistance. We also thank the scientists and staff of the Stanford Microarray Facility and the Stanford Microarray Database.

References

  1. 1.
    Hiort O, Holterhus PM (2000) The molecular basis of male sexual differentiation. Eur J Endocrinol 142:101–1101PubMedCrossRefGoogle Scholar
  2. 2.
    Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C (2004) Androgens and bone. Endocr Rev 25:389–425PubMedCrossRefGoogle Scholar
  3. 3.
    Claustres M, Sultan C (1988) Androgen and erythropoiesis: evidence for an androgen receptor in erythroblasts from human bone marrow cultures. Horm Res 29:17–22PubMedCrossRefGoogle Scholar
  4. 4.
    Cohen C, Lawson D, DeRose PB (1998) Sex and androgenic steroid receptor expression in hepatic adenomas. Hum Pathol 29:1428–1432PubMedCrossRefGoogle Scholar
  5. 5.
    Dorner G, Gotz F, Rohde W, Plagemann A, Lindner R, Peters H Ghanaati Z (2001) Genetic and epigenetic effects on sexual brain organization mediated by sex hormones. Neuro Endocrinol Lett 22:403–409PubMedGoogle Scholar
  6. 6.
    Meyer-Bahlburg HF, Dolezal C, Baker SW, Carlson AD, Obeid JS, New MI (2004) Prenatal androgenization affects gender-related behavior but not gender identity in 5–12-year-old girls with congenital adrenal hyperplasia. Arch Sex Behav 33:97–104PubMedCrossRefGoogle Scholar
  7. 7.
    Andriole G, Bruchovsky N, Chung LW, Matsumoto AM, Rittmaster R, Roehrborn C, Russell D, Tindall D (2004) Dihydrotestosterone and the prostate: the scientific rationale for 5alpha-reductase inhibitors in the treatment of benign prostatic hyperplasia. J Urol 172:1399–1403PubMedCrossRefGoogle Scholar
  8. 8.
    Culig Z, Klocker H, Bartsch G, Steiner H, Hobisch A (2003) Androgen receptors in prostate cancer. J Urol 170:1363–1369PubMedCrossRefGoogle Scholar
  9. 9.
    Fuller PJ (1991) The steroid receptor superfamily: mechanisms of diversity. FASEB J 5:3092–3099PubMedGoogle Scholar
  10. 10.
    Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO (1991) Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol 5:1396–1404PubMedCrossRefGoogle Scholar
  11. 11.
    Laudet V, Gronemeyer H (2002) The Nuclear Receptor FactsBook. First edition. Academic, London, UKGoogle Scholar
  12. 12.
    Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT (2004) Structural basis of androgen receptor binding to selective androgen response elements. Proc Natl Acad Sci USA 101:4758–4763PubMedCrossRefGoogle Scholar
  13. 13.
    Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocr Rev 23:175–200PubMedCrossRefGoogle Scholar
  14. 14.
    Hong H, Kohli K, Garabedian MJ, Stallcup MR (1997) GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 17:2735–2744PubMedGoogle Scholar
  15. 15.
    Linja MJ, Porkka KP, Kang Z, Savinainen KJ, Janne OA, Tammela TL, Vessella RL, Palvimo JJ, Visakorpi T (2004) Expression of androgen receptor coregulators in prostate cancer. Clin Cancer Res 10:1032–1040PubMedCrossRefGoogle Scholar
  16. 16.
    Truss M, Beato M (1993) Steroid hormone receptors: interaction with deoxyri-bonucleic acid and transcription factors. Endocr Rev 14:459–479PubMedCrossRefGoogle Scholar
  17. 17.
    McEwan IJ (2004) Essays in biochemistry, the nuclear receptor family. In: Kumar R, Johnson BH, Thompson EB (eds) Overview of the structural basis for transcription regulation by nuclear hormone receptors, 1st edn. Portland Press, London, UK, pp. 27–39Google Scholar
  18. 18.
    Holterhus PM, Hiort O, Demeter J, Brown PO, Brooks JD (2003) Differential gene-expression patterns in genital fibroblasts of normal males and 46,XY females with androgen insensitivity syndrome: evidence for early programming involving the androgen receptor. Genome Biol 4:R37PubMedCrossRefGoogle Scholar
  19. 19.
    Castoria G, Lombardi M, Barone MV, Bilancio A, Di Domenico M, Bottero D, Vitale F, Migliaccio A, Auricchio F (2003) Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. J Cell Biol 161:547–556PubMedCrossRefGoogle Scholar
  20. 20.
    DePrimo SE, Diehn M, Nelson JB, Reiter RE, Matese J, Fero M, Tibshirani R, Brown PO, Brooks JD (2002) Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol 3:R32CrossRefGoogle Scholar
  21. 21.
    McPhaul MJ, Deslypere JP, Allman DR, Gerard RD (1993) The adenovirus-mediated delivery of a reporter gene permits the assessment of androgen receptor function in genital skin fibroblast cultures. Stimulation of Gs and inhibition of G(o). J Biol Chem 268:26063–26066PubMedGoogle Scholar
  22. 22.
    McPhaul MJ, Schweikert HU, Allman DR, McPhaul MJ, Schweikert HU, Allman DR (1997) Assessment of androgen receptor function in genital skin fibroblasts using a recombinant adenovirus to deliver an androgen-responsive reporter gene. J Clin Endocrinol Metab 82:1944–1948PubMedCrossRefGoogle Scholar
  23. 23.
    Holterhus PM, Salzburg J, Werner R, Hiort O (2005) Transactivation properties of wild-type and mutant androgen receptors in transiently transfected primary human fibroblasts. Horm Res 63:152–158PubMedCrossRefGoogle Scholar
  24. 24.
    Gottlieb B, Beitel LK, Wu JH, Trifiro M (2004) The androgen receptor gene mutations database (ARDB): 2004 update. Hum Mutat 23:527–533PubMedCrossRefGoogle Scholar
  25. 25.
    Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, van de Rijn M, Botstein D, Brown PO, Pollack JR (2005) A DNA microarray survey of gene expression in normal human tissues. Genome Biol 6:R22PubMedCrossRefGoogle Scholar
  26. 26.
    Diehn M, Sherlock G, Binkley G, Jin H, Matese JC, Hernandez-Boussard T, Rees CA, Cherry JM, Botstein D, Brown PO, Alizadeh AA (2003) SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res 31:219–223PubMedCrossRefGoogle Scholar
  27. 27.
    Gollub J, Ball CA, Binkley G, Demeter J, Finkelstein DB, Hebert JM, Hernandez-Boussard T, Jin H, Kaloper M, Matese JC, Schroeder M, Brown PO, Botstein D, Sherlock G (2003) The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res 31:94–96PubMedCrossRefGoogle Scholar
  28. 28.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868PubMedCrossRefGoogle Scholar
  29. 29.
    Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRefGoogle Scholar
  30. 30.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  31. 31.
    Cleutjens CB, Steketee K, van Eekelen CC, van der Korput JA, Brinkmann AO, Trapman J (1997) Both androgen receptor and glucocorticoid receptor are able to induce prostate-specific antigen expression, but differ in their growth-stimulating properties of LNCaP cells. Endocrinology 138:5293–5300PubMedCrossRefGoogle Scholar
  32. 32.
    Rubin MA, Varambally S, Beroukhim R, Tomlins SA, Rhodes DR, Paris PL, Hofer MD, Storz-Schweizer M, Kuefer R, Fletcher JA, Hsi BL, Byrne JA, Pienta KJ, Collins C, Sellers WR, Chinnaiyan AM (2004) Overexpression, amplification, and androgen regulation of TPD52 in prostate cancer. Cancer Res 64:3814–3822PubMedCrossRefGoogle Scholar
  33. 33.
    Segawa T, Nau ME, Xu LL, Chilukuri RN, Makarem M, Zhang W, Petrovics G, Sesterhenn IA, McLeod DG, Moul JW, Vahey M, Srivastava S (2002) Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells. Oncogene 21:8749–8758PubMedCrossRefGoogle Scholar
  34. 34.
    Dhanasekaran SM, Dash A, Yu J, Maine IP, Laxman B, Tomlins SA, Creighton CJ, Menon A, Rubin MA, Chinnaiyan AM (2005) Molecular profiling of human prostate tissues: insights into gene expression patterns of prostate development during puberty. FASEB J 19:243–245PubMedGoogle Scholar
  35. 35.
    Qi H, Labrie Y, Grenier J, Fournier A, Fillion C, Labrie C (2001) Androgens induce expression of SPAK, a STE20/SPS1-related kinase, in LNCaP human prostate cancer cells. Mol Cell Endocrinol 182:181–192PubMedCrossRefGoogle Scholar
  36. 36.
    Xu LL, Shanmugam N, Segawa T, Sesterhenn IA, McLeod DG, Moul JW, Srivastava S (2000) A novel androgen-regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Genomics 66:257–263PubMedCrossRefGoogle Scholar
  37. 37.
    Nasu Y, Timme TL, Yang G, Bangma CH, Li L, Ren C, Park SH, DeLeon M, Wang J, Thompson TC (1998) Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nat Med 4:1062–1064PubMedCrossRefGoogle Scholar
  38. 38.
    Lin HK, Yeh S, Kang HY, Chang C (2001) Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 98:7200–7205PubMedCrossRefGoogle Scholar
  39. 39.
    Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, ten Dijke P, Sun Z (2001) SMAD3 represses androgen receptor-mediated transcription. Cancer Res 61:2112–2118PubMedGoogle Scholar
  40. 40.
    Schneikert J, Peterziel H, Defossez PA, Klocker H, Launoit Y, Cato AC (1996) Androgen receptor-Ets protein interaction is a novel mechanism for steroid hormone-mediated down-modulation of matrix metalloproteinase expression. J Biol Chem 271:23907–23913PubMedCrossRefGoogle Scholar
  41. 41.
    Petre CE, Wetherill YB, Danielsen M, Knudsen KE (2002) Cyclin D1: mechanism and consequence of androgen receptor co-repressor activity. J Biol Chem 277:2207–2215PubMedCrossRefGoogle Scholar
  42. 42.
    Chen S, Wang J, Yu G, Liu W, Pearce D (1997) Androgen and glucocorticoid receptor heterodimer formation. A possible mechanism for mutual inhibition of transcriptional activity. J Biol Chem 272:14087–14092PubMedCrossRefGoogle Scholar
  43. 43.
    Panet-Raymond V, Gottlieb B, Beitel LK, Pinsky L, Trifiro MA (2000) Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol 167:139–150PubMedCrossRefGoogle Scholar
  44. 44.
    Wang M, Wang J, Zhang Z, Zhao Z, Zhang R, Hu X, Tan T, Luo S, Luo Z (2005) Dissecting phenotypic variation among AIS patients. Biochem Biophys Res Commun 335:335–342PubMedCrossRefGoogle Scholar
  45. 45.
    Alen P, Claessens F, Verhoeven G, Rombauts W, Peeters B (1999) The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol Cell Biol 19:6085–6097PubMedGoogle Scholar
  46. 46.
    Pratt WB (1992) Control of steroid receptor function and cytoplasmic-nuclear transport by heat shock proteins. Bioessays 14:841–848PubMedCrossRefGoogle Scholar
  47. 47.
    Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP (2001) Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 276:13442–13451PubMedCrossRefGoogle Scholar
  48. 48.
    Cho KA, Ryu SJ, Park JS, Jang IS, Ahn JS, Kim KT, Park SC (2003) Senescent phenotype can be reversed by reduction of caveolin status. J Biol Chem 278:27789–27795PubMedCrossRefGoogle Scholar
  49. 49.
    Izbicka E, MacDonald JR, Davidson K, Lawrence RA, Gomez L, Von Hoff DD (1999) 5,6 Dihydro-5′-azacytidine (DHAC) restores androgen responsiveness in androgen-insensitive prostate cancer cells. Anticancer Res 19:1285–1291PubMedGoogle Scholar
  50. 50.
    Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AHFM, Günther T, Buettmer R, Schüle R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439PubMedGoogle Scholar
  51. 51.
    O’Malley B (2005) The biological and medical implications of steroid receptor coactivators. Presidential Plenary Session. Annual Meeting of the Endocrine Society, San Diego, CA, USAGoogle Scholar
  52. 52.
    Adachi M, Takayanagi R, Tomura A, Imasaki K, Kato S, Goto K, Yanase T, Ikuyama S, Nawata H (2000) Androgen-insensitivity syndrome as a possible coactivator disease. N Engl J Med 343:856–862PubMedCrossRefGoogle Scholar
  53. 53.
    Deeb A, Mason C, Lee YS, Hughes IA (2005) Correlation between genotype, phenotype and sex of rearing in 111 patients with partial androgen insensitivity syndrome. Clin Endocrinol 63:56–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jan-Hendrik Bebermeier
    • 1
  • James D. Brooks
    • 2
  • Samuel E. DePrimo
    • 2
  • Ralf Werner
    • 3
  • Uta Deppe
    • 3
  • Janos Demeter
    • 4
  • Olaf Hiort
    • 3
  • Paul-Martin Holterhus
    • 5
    • 6
    Email author
  1. 1.Department of Pediatric and Adolescent MedicineUniversity Hospital Schleswig-HolsteinLübeckGermany
  2. 2.Department of UrologyStanford University School of MedicineStanfordUSA
  3. 3.Department of Pediatric and Adolescent MedicineUniversity-Hospital Schleswig-HolsteinLübeckGermany
  4. 4.Department of GeneticsStanford University School of MedicineStanfordUSA
  5. 5.Department of PediatricsUniversity-Hospital Schleswig-HolsteinKielGermany
  6. 6.Department of PediatricsUniversity of KielKielGermany

Personalised recommendations